Solid-State NMR Characterization of Structure and Thermal Stability of Hybrid Organic-Inorganic Compounds based on HLaNb₂O₇ Dion-Jacobson Layered Perovskite

Supporting Information

Fig. S1 Comparison between the ${}^{13}C({}^{1}H)$ CP-MAS spectrum recorded with a contact time of 2.5 ms for the C10A sample (a), and the ${}^{13}C$ calculated projection obtained from the ${}^{13}C({}^{1}H)$ HETCOR experiment (b), which was recorded with the same contact time and is reported in Figure 5.

	H⁺	H⁺ (water)	$H^{+}(NH_{3}^{+})$	H ⁺ (defect)
	10.2 ppm	8.7 ppm	8.4 ppm	7.0 ppm
HLN	72%	26%	-	2%
HLN_TT	98%	-	-	2%
0.05-C8A	22%	55%	17%	6%
0.05-C8A_TT110°C	79%	-	16%	5%
0.05-C8A_TT130°C	79%	-	15%	6%
0.05-C8A_TT150°C	71%		15%	14%
0.05-C8A_TT170°C	79%	-	12%	9%
0.05-C8A_TT175°C	81%		3%	16%
0.05-C8A_TT190°C	80%	-	-	20%
0.05-C8A_TT220°C	88%	-	-	12%
0.1-C8A	33%	31%	28%	8%
0.1-C8A_TT110°C	65%	-	28%	7%
0.1-C8A_TT130°C	69%	-	22%	9%
0.1-C8A_TT150°C	67%	-	18%	15%
0.1-C8A_TT170°C	74%	-	6%	20%
1-C8A	35%	-	59%	6%
1-C8A_TT110°C	52%	-	41%	7%
1-C8A_TT130°C	54%	-	30%	16%
1-C8A_TT150°C	44%	-	5%	51%
C8A	34%	-	41%	25%
C8A_TT110°C	43%	-	28%	29%
C8A_TT130°C	42%	-	16%	42%
C8A_TT150°C	42%	-	6%	52%
C8A_TT170°C	40%	-	5%	55%
C10A	9%	-	60%	31%
C10A_TT110°C	26%	-	27%	47%
C10A_TT130°C	18%	-	20%	62%
C10A_TT150°C	22%	-	-	78%
C3	25%	46%	-	29%
C3_TT110°C	51%	22%	-	27%
C3_TT150°C	54%	28%	-	18%
C3_TT170°C	48%	31%	-	19%
C3_TT190°C	49%	34%		17%

Table S1 Quantification of i) the amount of the single species of un-exchanged proton ions of the pristine HLN structure ($\pm 2\%$), and ii) the molar ratio H⁺/NH₃⁺. Data were obtained through simulation of quantitative ¹H MAS NMR spectra.

as prepared		T ₁ /	ms	
	0.05-C8A	0.01-C8A	1-C8A	C8A
¹ H site				
CH ₃ -	352±8	331±8	342±7	354±6
-(CH ₂) ₅ -	323±7	338±8	322±5	358±6
CH ₂ CH ₂ NH ³⁺	190±7	213±8	300±5	342±6
CH ₂ NH ³⁺	234±8	250±6	304±5	390±30
NH ³⁺	71±6	80±7	220±10	280±10
H ₂ O	88±6	131±8	200±10	240±10
H⁺ HLN 7 ppm	72±6	101±7	204±8	240±9
H⁺ HLN 8.2 ppm	122±8	148±8	249±9	299±8
H⁺ HLN 8.7 ppm	54±5	62±6	-	-
H⁺ HLN 10 ppm	170±10	201±8	235±7	280±20

110°C	T ₁ /ms					
	0.05-C8A	0.01-C8A	1-C8A	C8A		
¹ H site						
CH ₃ -	319±3	307±7	383±6	378±5		
-(CH ₂) ₅ -	338±5	312±6	384±5	376±4		
CH ₂ CH ₂ NH ³⁺	320±10	259±6	294±3	296±6		
CH ₂ NH ³⁺	318±4	279±2	346±4	353±4		
NH ³⁺	189±6	140±10	218±4	206±6		
H⁺ HLN 7 ppm	228±8	218±4	334±3	393±4		
H⁺ HLN 8.2 ppm	248±3	218±1	306±3	328±8		
H⁺ HLN 10 ppm	558±2	469±7	429±10	370±11		

Table S2 Quantification of ¹H T_1 relaxation times for the several proton species of the C8A samples (as prepared and after the thermal treatment at 110°C).

Fig. S2 ¹H MAS NMR spectra recorded after the different thermal treatments for 0.1-C8A (a), 1-C8A (b), C8A (c), C10A (d) and C3 (e). The gray lines are guides to follow the evolution of the different proton ions species.

Fig. S3 X-ray diffraction patterns acquired for the octylammonium-HLN samples 1-C8A and C10A asreceived, after the 110°C step and after the 150°C step.

Fig. S4 ${}^{13}C({}^{1}H)$ DD one pulse MAS spectra recorded with a recycle delay of 4 s for C10A treated at 110°C and at 130°C.