Supporting Information

Ball-Milled Sulfur-Doped Graphene Materials Contain Metallic Impurities Originating from Ball-Milling Apparatus: Influence on the Catalytic Properties

Chun Kiang Chua, Zdeněk Sofer, Bahareh Khezri, Richard D. Webster, Martin Pumera*

Figure S1. EDS analysis of BMG-SS showing the presence of C, Fe, Si, S, Cr and Ni elements.

Figure S2. EDS analysis of BMG-ZO showing the presence of C, S, O and Si elements.

Figure S3. Survey XPS of BMG-SS and BMG-ZO.

	Elemental concentration from XPS survey scan (at%)			
Material	С	0	S	
BMG-SS	93.39	3.47	3.14	
BMG-ZO	93.67	3.34	2.99	

Table S1. Elemental composition of BMG-SS and BMG-ZO based on XPS survey scans and combustible elemental analysis.

	Elemental concentration from combustible elemental analysis (at%)				
Material	С	0	S	н	
BMG-SS	87.55	7.70	2.27	2.48	
BMG-ZO	96.02	1.06	1.88	1.04	

Table S2. Composition distribution of sulfur groups in BMG-SS and BMG-ZO.

	Elemental concentration from XPS survey scan (at%)			
Material	H-S-C	R-S-C	S-0	
BMG-SS	70.76	13.75	15.49	
BMG-ZO	80.34	11.72	7.94	

Figure S4. Cyclic voltammograms for 10 mM CHP on bare GC, EPPF, BMG-SS, BMG-ZO, FeO-, Fe₃O₄-, Cu₂O-, MoO₂- and MoO₃-modified electrodes. The suffix × denotes the number of times the current values of the cyclic voltammograms were scaled for ease of comparison. Supporting electrolyte, 50 mM phosphate buffered solution at pH 7.2. Purged with N₂. Scan rate 100 mV s⁻¹. Reference electrode, Ag/AgCl.

Figure S5. Cyclic voltammograms for 10 mM CHP on Cu-, CuO-, Mo-, MnO₂-, Ni- and NiO-modified electrodes as well as on BMG-SS and BMG-ZO. Supporting electrolyte, 50 mM phosphate buffered solution at pH 7.2. Purged with N₂. Scan rate 100 mV s⁻¹. Reference electrode, Ag/AgCl. The peak potential observed on Cu and CuO are not catalytic reduction peak of CHP since they overlap wholly with their inherent reduction peaks.

Figure S6. Cyclic voltammograms for 5 mM N_2H_4 on bare GC, EPPG, BMG-SS-, BMG-ZO-, Mo-, MoO₂-, MoO₃-, Cu-, CuO-, Cu₂O-, MnO₂-, Fe₃O₄-, Ni- and NiO-modified electrodes (solid lines), as well as the respective blank measurements (dotted lines). Supporting electrolyte, 50 mM phosphate buffered solution at pH 7.2. Purged with N_2 . Scan rate 100 mV s⁻¹. Reference electrode, Ag/AgCl.