# Proton Reduction by a Nickel Complex with Internal Quinoline Moiety for Proton-Relay

Karunamay Majee, <sup>[a]</sup> Jully Patel, <sup>[a]</sup> Surabhi Rai, <sup>[a]</sup> Babulal Das, <sup>[b]</sup> Binata Panda, <sup>[c]</sup> and Sumanta Kumar Padhi \*, <sup>[a]</sup>

<sup>a</sup> Artificial Photosynthesis Lab, Department of Applied Chemistry, Indian School of Mines, Dhanbad, 826004, Jharkhand, India

<sup>b</sup> Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India

<sup>c</sup> String Theory Lab, Department of Applied Physics, Indian School of Mines, Dhanbad, 826004, Jharkhand, India

\*E-mails: padhi.sk.ac@ismdhanbad.ac.in

**Supporting Information** 

| Table of Contents                                                                                                                 |          |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
| Index                                                                                                                             | Page No. |
| Figure S1. IR Spectra of the Ligand DQPDH <sub>2</sub> .                                                                          | 2        |
| Figure S2. <sup>1</sup> H NMR of DQPDH <sub>2</sub> in CDCl <sub>3</sub>                                                          | 2        |
| Figure S3. <sup>13</sup> C NMR of DQPDH <sub>2</sub> in CDCl <sub>3</sub> .                                                       | 3        |
| Figure S4. The UV-Vis spectrum of the 0.1 mM DQPDH <sub>2</sub> ligand and Ni(DQPD).                                              | 3        |
| <b>Figure S5</b> . <sup>1</sup> H NMR of <b>Ni(DQPD</b> ) complex in DMSO-D <sub>6</sub> .                                        | 4        |
| <b>Figure S6</b> . <sup>1</sup> H NMR of <b>Ni(DQPD)</b> complex in DMSO-D <sub>6</sub> in presence of acetic acid.               | 5        |
| Figure S7. The fluorescence quenching of fluorescein by Ni(DQPD) complex.                                                         | 5        |
| Figure S8. Stern-Volmer plot of the emission quenching of fluorescein.                                                            | 6        |
| Figure S9. Rate of Hydrogen production with varied concentration of Ni(DQPD) complex.                                             | 6        |
| Figure S10. Rate of Hydrogen production with varied concentration of fluorescein.                                                 | 7        |
| Figure S11. Hydrogen evolution in presence of complex and in blank solution.                                                      | 7        |
| Figure S12. Hydrogen evolution in presence of light and in under dark condition.                                                  | 8        |
| Figure S13. Photo-degradation of fluorescein.                                                                                     | 8        |
| <b>Figure S14</b> . H <sub>2</sub> evolution after 25 h of the irradiation with the addition of Fl or <b>Ni(DQOD</b> ).           | 9        |
| Figure S15. Rate of Hydrogen production at varied temperature.                                                                    | 9        |
| Figure S16. Eyring-Polanyi plot of Hydrogen evolution.                                                                            | 10       |
| Figure S17. Arrhenius plot of Hydrogen evolution.                                                                                 | 10       |
| Figure S18. CV of 1.0 mM DQPDH <sub>2</sub> in DMF.                                                                               | 11       |
| Figure S19. CV of 1.0 mM DQPDH <sub>2</sub> in DMF after addition of NaH.                                                         | 11       |
| Figure S20. CV of Ni(DQPD) complex prepared in situ from.                                                                         | 12       |
| Figure S21. CV of 1.0 mM isolated Ni(DQPD) complex in DMF                                                                         | 12       |
| Figure S22. CV of 1.0 mM isolated Ni(DQPD) complex in presence one equiv. of AcOH.                                                | 13       |
| Figure S23. The electron density in (1) and (1a).                                                                                 | 13       |
| <b>Figure S24</b> . CV of 0.5 mM <b>Ni(DQPD)</b> in the presence of varying concentrations of CH <sub>3</sub> COOH.               | 14       |
| <b>Figure S25</b> . CV of 1.0 mM Ni(DQPD) in the presence of varying concentrations of CH <sub>3</sub> COOH.                      | 14       |
| <b>Figure S26</b> . CV of 1.5 mM <b>Ni(DQPD)</b> in the presence of varying concentrations of CH <sub>3</sub> COOH.               | 15       |
| Figure S27. Cyclic voltammograms of 1.0 mM Ni(DQPD) complex at varying scan rates.                                                | 15       |
| <b>Figure S28</b> . Peak current $(i_p)$ vs. square root of scan rate $(v^{1/2})$ with linear fitted slope.                       | 16       |
| Figure S29. Catalytic current elevation from CV of 1.5 mM Ni(DQPD) at varying scan rate.                                          | 16       |
| Figure S30. The UV-Vis spectrum of the 0.05 mM Ni(DQPD) with addition of 15 equiv. of AcOH.                                       | 17       |
| <b>Figure S31</b> . Dependence of catalytic current, i <sub>c</sub> , on metal and acid concentration.                            | 17       |
| <b>Figure S32</b> . Dependence of catalytic current, i <sub>c</sub> /i <sub>p</sub> , on acetic acid concentration.               | 18       |
| Figure S33. Optimized structure of Ni(DQPD).                                                                                      | 18       |
| Figure S34. Optimized structure of 1 generated after protonation of Ni(DQPD).                                                     | 19       |
| Figure S35. Optimized structure of 1a generated after one electron reduction of 1.                                                | 19       |
| <b>Figure S36</b> . Optimized structure of <b>2a</b> after 1 e <sup>-</sup> reduction of <b>Ni(DQPD)</b> followed by protonation. | 20       |
| Figure S37. Optimized structure of 1b generated after protonation of 1a.                                                          | 20       |
| Figure S38. Optimized structure of 1c generated after one electron reduction of 1b.                                               | 21       |
| Figure S39. The transition state TS1 identified by STQN calculation.                                                              | 21       |
| Figure S40. The structure of the intermediate.                                                                                    | 22       |
| Figure S41. The transition state TS2 identified by STQN calculation.                                                              | 22       |
| Table S1. Crystal Data and Refinement Parameters of Ni(DQPD)·H2O.                                                                 | 23       |
| Table S2-S10. XYZ coordinates of computed structures                                                                              | 23-44    |
| Table S11. Selected bond distances (A) and angles ( $^{\circ}$ ) in optimized Ni(DQPD)·H <sub>2</sub> O.                          | 45       |
| Table S12. Selected bond distances (A) and angles (°) in Ni(DQPD).                                                                | 45       |
| Table S13. Selected bond distances (A) and angles (°) in optimized 1.                                                             | 45       |
| Table S14. Selected bond distances (A) and angles (°) in optimized 1a.                                                            | 46       |
| Table S15. Selected bond distances (A) and angles (°) in optimized 1b.                                                            | 46       |
| Table S16. Selected bond distances (A) and angles (°) in optimized 1c.                                                            | 46       |
| Table S17. Selected bond distances (A) and angles (°) in optimized 2a.                                                            | 47       |
| Table S18. Selected bond distances (A) and angles (°) in the transition state.                                                    | 47       |

\_\_\_\_\_ [ 1 ]\_\_\_\_\_





**Figure S4**. The UV-Visible spectrum of 0.1 mM (a) **DQPDH**<sub>2</sub> ligand and (b) **Ni(DQPD)** complex in DMF/H<sub>2</sub>O (95:5, v/v).



Figure S5. <sup>1</sup>H NMR of Ni(DQPD) (top) and Ni(DQPDH) (bottom) complex in DMSO-D<sub>6</sub>.



Figure S6. <sup>1</sup>H NMR of Ni(DQPD) complex in DMSO-D<sub>6</sub> in presence of acetic acid.



Figure S7. The fluorescence quenching of fluorescein by Ni(DQPD) complex in 70:30 DMF/H<sub>2</sub>O.



**Figure S8**. Stern-Volmer plot of the emission quenching of fluorescein solution  $5 \times 10^{-8}$  M concentration in 70:30 DMF/H<sub>2</sub>O by **Ni(DQPD)**.



**Figure S9**. Rate of Hydrogen production with varied concentration of **Ni(DQPD**) complex with the presence of 2mM fluorescein in 2 mL of 70:30 DMF/H<sub>2</sub>O.



Figure S10. Rate of Hydrogen production by Ni(DQPD) complex with varied concentration of fluorescein in 70:30 DMF/H<sub>2</sub>O.



**Figure S11**. Hydrogen evolution by 4 x  $10^{-6}$  M **Ni(DQPD)** complex in presence of 2 mM fluorescein in 70:30 DMF/H<sub>2</sub>O (black) and blank solution without catalyst (blue).



**Figure S12**. Hydrogen evolution by 4 x  $10^{-6}$  M **Ni(DQPD)** complex in presence of 2 mM fluorescein in 70:30 DMF/H<sub>2</sub>O in presence of light (black) and under dark condition (blue).



**Figure S13**. UV-vis absorption spectral change of the system containing fluorescein (4 x  $10^{-5}$  M) and (4 x  $10^{-5}$ ) M TEA in 70:30 DMF/H<sub>2</sub>O (left). UV-vis absorption spectral change of the system containing fluorescein (4 x  $10^{-5}$  M), **Ni(DQPD)** (8 x  $10^{-5}$  M), (4 x  $10^{-5}$ ) M TEA in 70:30 DMF/H<sub>2</sub>O (left)



**Figure S14**. Hydrogen production with 4 x  $10^{-6}$  M Ni(DQPD) complex in 70:30 DMF/H<sub>2</sub>O in presence of 1 mM fluorescein (Top) and [TEA] = 0.36 M and the recovery of the photocatalytic activity by the addition of extra Fl (1.0 mM) or Ni(DQPD) 4 x  $10^{-6}$  after 25 h irradiation.



**Figure S15**. Rate of Hydrogen production at varied temperature by 5 x  $10^{-6}$  M [**Ni(DQPD**)] complex in presence of 2 mM fluorescein in 70:30 DMF/H<sub>2</sub>O.



**Figure S16**. Eyring-Polanyi plot of Hydrogen evolution at varied temperature by 5 x  $10^{-6}$  M [**Ni(DQPD**)] complex in presence of 2 mM fluorescein in 70:30 DMF/H<sub>2</sub>O.



**Figure S17**. Arrhenius plot of Hydrogen evolution at varied temperature by 5 x  $10^{-6}$  M [**Ni(DQPD**)] complex in presence of 2 mM fluorescein in 70:30 DMF/H<sub>2</sub>O.



Figure S18. CV of 1.0 mM DQPDH<sub>2</sub> in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup>.



Figure S19. CV of 1.0 mM DQPDH<sub>2</sub> in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup> under N<sub>2</sub> after addition of 2 equivalents of NaH.



**Figure S20**. CV of **Ni(DQPD)** complex prepared *in situ* from, 1.0 mM **DQPDH**<sub>2</sub> in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup> under N<sub>2</sub> after addition of 2 equivalents of NaH, following one equiv. of NiCl<sub>2</sub>·6H<sub>2</sub>O.



Figure S21. CV of 1.0 mM isolated Ni(DQPD) complex in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of  $100 \text{ mV s}^{-1}$  under N<sub>2</sub>.



**Figure S22**. CV of 1.0 mM isolated **Ni(DQPD)** complex in presence one equiv. of AcOH, in DMF, 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup> under N<sub>2</sub>.



Total electron density in (1)

Electron density in (1a)

Figure S23. The electron density in (1) and (1a).



**Figure S24.** CV of **Ni(DQPD)** in the presence of varying concentrations of CH<sub>3</sub>COOH. The experimental conditions are 0.5 mM **Ni(DQPD)** in DMF/H<sub>2</sub>O (95:5, v/v), 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup>. The CH<sub>3</sub>COOH equivalents are 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 respectively from red to violet color.



**Figure S25**. CV of **Ni(DQPD)** in the presence of varying concentrations of CH<sub>3</sub>COOH. The experimental conditions are 1.0 mM **Ni(DQPD)** in DMF/H<sub>2</sub>O (95:5, v/v), 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup>. The CH<sub>3</sub>COOH equivalents are 2.5, 5.0, 7.5, 10.0, and 15.0 respectively from red to violet color.



**Figure S26**. CV of **Ni**(**DQPD**) in the presence of varying concentrations of CH<sub>3</sub>COOH. The experimental conditions are 1.5 mM **Ni**(**DQPD**) in DMF/H<sub>2</sub>O (95:5, v/v), 0.1 M TBAP, and an electrochemical potential scan rate of 100 mV s<sup>-1</sup>. The CH<sub>3</sub>COOH equivalents are 2.5, 5.0, 7.5, 10.0, 15.0 and 22.5 respectively from red to brown color. (Right side 2.5, 5.0, 7.5, 10.0, 15.0, 17.5, 20 and 22.5).



**Figure S27**. Cyclic voltammograms of 1.0 mM **Ni(DQPD)** complex and in presence of 0.1 M TBAP as supporting electrolyte in DMF/H<sub>2</sub>O (95:5, v/v) solution at varying scan rates.



**Figure S28**. Peak current (i<sub>p</sub>) *vs*. square root of scan rate scan rate ( $v^{1/2}$ ) with linear fitted slope  $3.0 \times 10^{-5}$  A V<sup>-1/2</sup> s<sup>1/2</sup>.



**Figure S29.** CV of 1.5 mM **Ni(DQPD)** in DMF/H<sub>2</sub>O (95:5, v/v) 0.1 M TBAP and scan rate 100 mV/s (green). Catalytic current in presence 2.5equivalent of CH<sub>3</sub>COOH at a varying scan rate, of 100, 150, 200, and 250 mV s<sup>-1</sup> (black to pink color respectively).



**Figure S30**. The UV-Visible spectrum of the 0.05 mM **Ni(DQPD)** complex in DMF/H<sub>2</sub>O (95:5, v/v) with addition of 15 equivalent of CH<sub>3</sub>COOH (left). Acid titration of 0.05 mM **Ni(DQPD)** complex in DMF/H<sub>2</sub>O (95:5, v/v) (right).



**Figure S31**. Dependence of catalytic current, i<sub>c</sub>, (a) on metal concentration in presence of 15 equivalent of acetic acid. (b) On acetic acid concentration for a catalyst concentration of 1.5 mM. The supporting electrolyte is 0.1 M TBAP, and the potential scan rate is 100 mV s<sup>-1</sup>.



**Figure S32**. Dependence of  $i_c/i_p$ , on acetic acid concentration for three different concentrations of catalyst. Experiments were undertaken at three different catalyst concentrations: 0.5, 1.0 and 1.5 mM catalyst. The supporting electrolyte is 0.1 M TBAP, and the potential scan rate is 100 mV s<sup>-1</sup>.



Figure S33. Optimized structure of Ni(DQPD).



Figure S34. Optimized structure of 1 generated after protonation of Ni(DQPD).



Figure S35. Optimized structure of 1a generated after one electron reduction of 1.



Figure S36. Optimized structure of 2a generated after one electron reduction of Ni<sup>II</sup>(DQPD) to Ni<sup>I</sup>(DQPD) followed by protonation. The complex 2a is energetically 40 kCal/mol less stable than 1a.



Figure S37. Optimized structure of 1b generated after protonation of 1a.



**Figure S38**. Optimized structure of **1c** generated after one electron reduction of **1b**. Upon one electron reduction to **1b**, wherein the hydrogen molecule formed and dissociated from the Ni atom generates the reduced complex **1c**.



Figure S39. The transition state TS1 identified by carrying out a synchronous transit-guided quasi-Newton (STQN) calculation using (1b) as a starting structure and the product as (Intermediate).



**Figure S41**. The transition state **TS2** identified by carrying out a synchronous transit-guided quasi-Newton (STQN) calculation using (**intermediate**) as a starting structure and the product as (**1c**).

|                                    | Ni(DQPD)·H <sub>2</sub> O |
|------------------------------------|---------------------------|
| CCDC Number                        | CCDC 1401801              |
| Empirical formula                  | $C_{25}H_{15}N_5NiO_2$    |
| Formula weight                     | 494.13                    |
| Temperature (K)                    | 296(2)                    |
| Wavelength, Å                      | 0.71073                   |
| Crystal system                     | Monoclinic                |
| Space group                        | $P2_{1}/c$                |
| <i>a</i> , Å                       | 11.555(1)                 |
| b, Å                               | 19.806(1)                 |
| <i>c</i> , Å                       | 9.154(1)                  |
| $\alpha$ , deg                     | 90                        |
| $\beta$ , deg                      | 94.097(3)                 |
| γ, deg                             | 90                        |
| <i>V</i> , Å <sup>3</sup>          | 2089.46                   |
| Ζ                                  | 4                         |
| $D_{\rm calc}~({ m g~cm^{-3}})$    | 1.414                     |
| $\mu$ , (mm <sup>-1</sup> )        | 0.950                     |
| <sup>a</sup> GOF on F <sup>2</sup> | 0.993                     |
| R [I>2σ(I)]                        | ${}^{b}R_{1} = 0.0578,$   |
|                                    | $^{c}wR_{2} = 0.1267$     |
| R indices (all data)               | ${}^{b}R_{1} = 0.1413,$   |
|                                    | $^{c}wR_{2} = 0.1753$     |

Table S1. Crystal Data and Refinement Parameters of Ni(DQPD)·H2O.

<sup>a</sup>GOF =  $[\Sigma[w(F_0^2 - F_c^2)^2]/M - N]^{1/2}$  (M = number of reflections, N = number of parameters refined).<sup>b</sup>R<sub>1</sub> =  $\Sigma ||F_0| - |F_c||/\Sigma|F_0|$ .<sup>c</sup>wR<sub>2</sub> =  $[\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]]$ .

#### Table S2. XYZ coordinates for Ni(DQPD)

| Center | Atomic | At | omic     | Coordin  | ates | (Angstroms) |
|--------|--------|----|----------|----------|------|-------------|
| Number | Numbe  | r  | Туре     | Х        | Y    | Ζ           |
|        |        |    |          |          |      |             |
| 1      | 28     | 0  | 1.102000 | 0.62400  | 00 : | 5.869000    |
| 2      | 7      | 0  | 1.951000 | -0.67100 | 00 4 | 1.909000    |
|        |        |    |          |          |      |             |

| 3  | 7 | 0 | 2.551000  | 1.706000  | 5.241000 |
|----|---|---|-----------|-----------|----------|
| 4  | 7 | 0 | -0.069000 | -0.755000 | 6.273000 |
| 5  | 8 | 0 | 4.450000  | 1.553000  | 3.904000 |
| 6  | 8 | 0 | -0.359000 | -3.068000 | 6.047000 |
| 7  | 6 | 0 | 3.435000  | 1.073000  | 4.424000 |
| 8  | 6 | 0 | 1.454000  | -1.925000 | 4.945000 |
| 9  | 6 | 0 | 3.067000  | -0.360000 | 4.233000 |
| 10 | 6 | 0 | 3.718000  | -1.333000 | 3.516000 |
| 11 | 1 | 0 | 4.476000  | -1.125000 | 3.020000 |
| 12 | 6 | 0 | 0.231000  | -2.012000 | 5.807000 |
| 13 | 6 | 0 | 2.088000  | -2.935000 | 4.257000 |
| 14 | 1 | 0 | 1.754000  | -3.803000 | 4.272000 |
| 15 | 6 | 0 | 3.229000  | -2.632000 | 3.544000 |
| 16 | 1 | 0 | 3.673000  | -3.304000 | 3.077000 |
| 17 | 6 | 0 | -1.121000 | -0.432000 | 7.145000 |
| 18 | 6 | 0 | -3.083000 | -0.669000 | 8.506000 |
| 19 | 1 | 0 | -3.767000 | -1.210000 | 8.831000 |
| 20 | 6 | 0 | -1.070000 | 0.945000  | 7.514000 |
| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |

| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
|----|---|---|-----------|-----------|----------|
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |
| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |
| 39 | 6 | 0 | 2.290000  | 4.086000  | 4.926000 |
| 40 | 1 | 0 | 1.690000  | 3.910000  | 4.237000 |
| 41 | 7 | 0 | 4.341000  | 2.259000  | 7.324000 |
| 42 | 6 | 0 | 5.033000  | 4.918000  | 7.975000 |
| 43 | 1 | 0 | 5.266000  | 5.789000  | 8.202000 |
| 44 | 7 | 0 | -0.053000 | 1.692000  | 6.960000 |
| 45 | 6 | 0 | 5.195000  | 2.553000  | 8.289000 |
| 46 | 1 | 0 | 5.559000  | 1.850000  | 8.777000 |
| 47 | 6 | 0 | 5.589000  | 3.860000  | 8.627000 |
| 48 | 1 | 0 | 6.226000  | 4.003000  | 9.290000 |
|    |   |   |           |           |          |

 Table S3. XYZ coordinates for Ni(DQPDH) (1)

| Center | Atomic | 1  | Atomic    | Coordinate | s (Angstroms) |
|--------|--------|----|-----------|------------|---------------|
| Number | Numbe  | er | Туре      | X Y        | Z             |
|        |        |    |           |            |               |
| 1      | 28     | 0  | 1.102000  | 0.624000   | 5.869000      |
| 2      | 7      | 0  | 1.951000  | -0.671000  | 4.909000      |
| 3      | 7      | 0  | 2.551000  | 1.706000   | 5.241000      |
| 4      | 7      | 0  | -0.069000 | -0.755000  | 6.273000      |
| 5      | 8      | 0  | 4.450000  | 1.553000   | 3.904000      |
| 6      | 8      | 0  | -0.359000 | -3.068000  | 6.047000      |
| 7      | 6      | 0  | 3.435000  | 1.073000   | 4.424000      |
| 8      | 6      | 0  | 1.454000  | -1.925000  | 4.945000      |
| 9      | 6      | 0  | 3.067000  | -0.360000  | 4.233000      |
| 10     | 6      | 0  | 3.718000  | -1.333000  | 3.516000      |
| 11     | 1      | 0  | 4.476000  | -1.125000  | 3.020000      |
| 12     | 6      | 0  | 0.231000  | -2.012000  | 5.807000      |
| 13     | 6      | 0  | 2.088000  | -2.935000  | 4.257000      |
| 14     | 1      | 0  | 1.754000  | -3.803000  | 4.272000      |
| 15     | 6      | 0  | 3.229000  | -2.632000  | 3.544000      |
| 16     | 1      | 0  | 3.673000  | -3.304000  | 3.077000      |
| 17     | 6      | 0  | -1.121000 | -0.432000  | 7.145000      |
| 18     | 6      | 0  | -3.083000 | -0.669000  | 8.506000      |
| 19     | 1      | 0  | -3.767000 | -1.210000  | 8.831000      |
| 20     | 6      | 0  | -1.070000 | 0.945000   | 7.514000      |

-----

| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
|----|---|---|-----------|-----------|----------|
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |
| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |
| 39 | 6 | 0 | 2.290000  | 4.086000  | 4.926000 |
| 40 | 1 | 0 | 1.690000  | 3.910000  | 4.237000 |
| 41 | 7 | 0 | 4.341000  | 2.259000  | 7.324000 |
| 42 | 6 | 0 | 5.033000  | 4.918000  | 7.975000 |
| 43 | 1 | 0 | 5.266000  | 5.789000  | 8.202000 |
| 44 | 7 | 0 | -0.053000 | 1.692000  | 6.960000 |

| 45   | 6 | 0 | 5.195000 | 2.553000 | 8.289000 |
|------|---|---|----------|----------|----------|
| 46   | 1 | 0 | 5.559000 | 1.850000 | 8.777000 |
| 47   | 6 | 0 | 5.589000 | 3.860000 | 8.627000 |
| 48   | 1 | 0 | 6.226000 | 4.003000 | 9.290000 |
| 49   | 1 | 0 | 4.101402 | 1.313434 | 7.103781 |
| <br> |   |   |          |          |          |

Table S4. XYZ coordinates for (1a)

| Center | Atom | ic At | omic      | Coordinate | s (Angstroms) |
|--------|------|-------|-----------|------------|---------------|
| Number | Nun  | nber  | Туре      | X Y        | Z             |
|        |      |       |           |            |               |
| 1      | 28   | 0     | 1.102000  | 0.624000   | 5.869000      |
| 2      | 7    | 0     | 1.951000  | -0.671000  | 4.909000      |
| 3      | 7    | 0     | 2.551000  | 1.706000   | 5.241000      |
| 4      | 7    | 0     | -0.069000 | -0.755000  | 6.273000      |
| 5      | 8    | 0     | 4.450000  | 1.553000   | 3.904000      |
| 6      | 8    | 0     | -0.359000 | -3.068000  | 6.047000      |
| 7      | 6    | 0     | 3.435000  | 1.073000   | 4.424000      |
| 8      | 6    | 0     | 1.454000  | -1.925000  | 4.945000      |
| 9      | 6    | 0     | 3.067000  | -0.360000  | 4.233000      |
| 10     | 6    | 0     | 3.718000  | -1.333000  | 3.516000      |
| 11     | 1    | 0     | 4.476000  | -1.125000  | 3.020000      |
| 12     | 6    | 0     | 0.231000  | -2.012000  | 5.807000      |
| 13     | 6    | 0     | 2.088000  | -2.935000  | 4.257000      |

| 14 | 1 | 0 | 1.754000  | -3.803000 | 4.272000 |
|----|---|---|-----------|-----------|----------|
| 15 | 6 | 0 | 3.229000  | -2.632000 | 3.544000 |
| 16 | 1 | 0 | 3.673000  | -3.304000 | 3.077000 |
| 17 | 6 | 0 | -1.121000 | -0.432000 | 7.145000 |
| 18 | 6 | 0 | -3.083000 | -0.669000 | 8.506000 |
| 19 | 1 | 0 | -3.767000 | -1.210000 | 8.831000 |
| 20 | 6 | 0 | -1.070000 | 0.945000  | 7.514000 |
| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |
| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |

| 38   | 1 | 0 | 2.156000  | 6.126000 | 4.821000 |
|------|---|---|-----------|----------|----------|
| 39   | 6 | 0 | 2.290000  | 4.086000 | 4.926000 |
| 40   | 1 | 0 | 1.690000  | 3.910000 | 4.237000 |
| 41   | 7 | 0 | 4.341000  | 2.259000 | 7.324000 |
| 42   | 6 | 0 | 5.033000  | 4.918000 | 7.975000 |
| 43   | 1 | 0 | 5.266000  | 5.789000 | 8.202000 |
| 44   | 7 | 0 | -0.053000 | 1.692000 | 6.960000 |
| 45   | 6 | 0 | 5.195000  | 2.553000 | 8.289000 |
| 46   | 1 | 0 | 5.559000  | 1.850000 | 8.777000 |
| 47   | 6 | 0 | 5.589000  | 3.860000 | 8.627000 |
| 48   | 1 | 0 | 6.226000  | 4.003000 | 9.290000 |
| 49   | 1 | 0 | 4.101402  | 1.313434 | 7.103781 |
| <br> |   |   |           |          |          |

### Table S5. XYZ coordinates for (1b)

| Center | Ator | mic A | tomic     | Coordinat | es (Angstroms) |
|--------|------|-------|-----------|-----------|----------------|
| Number | Nu   | ımber | Туре      | X Y       | X Z            |
|        |      |       |           |           |                |
| 1      | 28   | 0     | 1.102000  | 0.624000  | 5.869000       |
| 2      | 7    | 0     | 1.951000  | -0.671000 | 4.909000       |
| 3      | 7    | 0     | 2.551000  | 1.706000  | 5.241000       |
| 4      | 7    | 0     | -0.069000 | -0.755000 | 6.273000       |
| 5      | 8    | 0     | 4.450000  | 1.553000  | 3.904000       |
| 6      | 8    | 0     | -0.359000 | -3.068000 | 6.047000       |

\_\_\_\_\_

| 7  | 6 | 0 | 3.435000  | 1.073000  | 4.424000 |
|----|---|---|-----------|-----------|----------|
| 8  | 6 | 0 | 1.454000  | -1.925000 | 4.945000 |
| 9  | 6 | 0 | 3.067000  | -0.360000 | 4.233000 |
| 10 | 6 | 0 | 3.718000  | -1.333000 | 3.516000 |
| 11 | 1 | 0 | 4.476000  | -1.125000 | 3.020000 |
| 12 | 6 | 0 | 0.231000  | -2.012000 | 5.807000 |
| 13 | 6 | 0 | 2.088000  | -2.935000 | 4.257000 |
| 14 | 1 | 0 | 1.754000  | -3.803000 | 4.272000 |
| 15 | 6 | 0 | 3.229000  | -2.632000 | 3.544000 |
| 16 | 1 | 0 | 3.673000  | -3.304000 | 3.077000 |
| 17 | 6 | 0 | -1.121000 | -0.432000 | 7.145000 |
| 18 | 6 | 0 | -3.083000 | -0.669000 | 8.506000 |
| 19 | 1 | 0 | -3.767000 | -1.210000 | 8.831000 |
| 20 | 6 | 0 | -1.070000 | 0.945000  | 7.514000 |
| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |

| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
|----|---|---|-----------|-----------|----------|
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |
| 39 | 6 | 0 | 2.290000  | 4.086000  | 4.926000 |
| 40 | 1 | 0 | 1.690000  | 3.910000  | 4.237000 |
| 41 | 7 | 0 | 4.341000  | 2.259000  | 7.324000 |
| 42 | 6 | 0 | 5.033000  | 4.918000  | 7.975000 |
| 43 | 1 | 0 | 5.266000  | 5.789000  | 8.202000 |
| 44 | 7 | 0 | -0.053000 | 1.692000  | 6.960000 |
| 45 | 6 | 0 | 5.195000  | 2.553000  | 8.289000 |
| 46 | 1 | 0 | 5.559000  | 1.850000  | 8.777000 |
| 47 | 6 | 0 | 5.589000  | 3.860000  | 8.627000 |
| 48 | 1 | 0 | 6.226000  | 4.003000  | 9.290000 |
| 49 | 1 | 0 | 4.101402  | 1.313434  | 7.103781 |
| 50 | 1 | 0 | 1.893229  | 0.481124  | 7.075666 |
|    |   |   |           |           |          |

**Table S6.** XYZ coordinates for (1b')

\_\_\_\_\_

Center Atomic Atomic Coordinates (Angstroms)

ſ

| Number | Nur | nber | Туре      | X Y       | Z        |
|--------|-----|------|-----------|-----------|----------|
| 1      | 28  | 0    | 1.102000  | 0.624000  | 5.869000 |
| 2      | 7   | 0    | 1.951000  | -0.671000 | 4.909000 |
| 3      | 7   | 0    | 2.551000  | 1.706000  | 5.241000 |
| 4      | 7   | 0    | -0.069000 | -0.755000 | 6.273000 |
| 5      | 8   | 0    | 4.450000  | 1.553000  | 3.904000 |
| 6      | 8   | 0    | -0.359000 | -3.068000 | 6.047000 |
| 7      | 6   | 0    | 3.435000  | 1.073000  | 4.424000 |
| 8      | 6   | 0    | 1.454000  | -1.925000 | 4.945000 |
| 9      | 6   | 0    | 3.067000  | -0.360000 | 4.233000 |
| 10     | 6   | 0    | 3.718000  | -1.333000 | 3.516000 |
| 11     | 1   | 0    | 4.476000  | -1.125000 | 3.020000 |
| 12     | 6   | 0    | 0.231000  | -2.012000 | 5.807000 |
| 13     | 6   | 0    | 2.088000  | -2.935000 | 4.257000 |
| 14     | 1   | 0    | 1.754000  | -3.803000 | 4.272000 |
| 15     | 6   | 0    | 3.229000  | -2.632000 | 3.544000 |
| 16     | 1   | 0    | 3.673000  | -3.304000 | 3.077000 |
| 17     | 6   | 0    | -1.121000 | -0.432000 | 7.145000 |
| 18     | 6   | 0    | -3.083000 | -0.669000 | 8.506000 |
| 19     | 1   | 0    | -3.767000 | -1.210000 | 8.831000 |
| 20     | 6   | 0    | -1.070000 | 0.945000  | 7.514000 |
| 21     | 6   | 0    | -3.035000 | 0.626000  | 8.894000 |
| 22     | 1   | 0    | -3.666000 | 0.955000  | 9.492000 |

| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
|----|---|---|-----------|-----------|----------|
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |
| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |
| 39 | 6 | 0 | 2.290000  | 4.086000  | 4.926000 |
| 40 | 1 | 0 | 1.690000  | 3.910000  | 4.237000 |
| 41 | 7 | 0 | 4.341000  | 2.259000  | 7.324000 |
| 42 | 6 | 0 | 5.033000  | 4.918000  | 7.975000 |
| 43 | 1 | 0 | 5.266000  | 5.789000  | 8.202000 |
| 44 | 7 | 0 | -0.053000 | 1.692000  | 6.960000 |
| 45 | 6 | 0 | 5.195000  | 2.553000  | 8.289000 |
| 46 | 1 | 0 | 5.559000  | 1.850000  | 8.777000 |

| 47 | 6 | 0 | 5.589000 | 3.860000 | 8.627000 |
|----|---|---|----------|----------|----------|
| 48 | 1 | 0 | 6.226000 | 4.003000 | 9.290000 |
| 49 | 1 | 0 | 4.101402 | 1.313434 | 7.103781 |
| 50 | 1 | 0 | 0.340426 | 1.161510 | 4.758330 |
|    |   |   |          |          |          |

-----

**Table S7.** XYZ coordinates for (1c)

| Center | Atomic A |    | Atomic    | Coordinate | s (Angstroms) |
|--------|----------|----|-----------|------------|---------------|
| Number | Numb     | er | Туре      | X Y        | Z             |
|        |          |    |           |            |               |
| 1      | 28       | 0  | 1.102000  | 0.624000   | 5.869000      |
| 2      | 7        | 0  | 1.951000  | -0.671000  | 4.909000      |
| 3      | 7        | 0  | 2.551000  | 1.706000   | 5.241000      |
| 4      | 7        | 0  | -0.069000 | -0.755000  | 6.273000      |
| 5      | 8        | 0  | 4.450000  | 1.553000   | 3.904000      |
| 6      | 8        | 0  | -0.359000 | -3.068000  | 6.047000      |
| 7      | 6        | 0  | 3.435000  | 1.073000   | 4.424000      |
| 8      | 6        | 0  | 1.454000  | -1.925000  | 4.945000      |
| 9      | 6        | 0  | 3.067000  | -0.360000  | 4.233000      |
| 10     | 6        | 0  | 3.718000  | -1.333000  | 3.516000      |
| 11     | 1        | 0  | 4.476000  | -1.125000  | 3.020000      |
| 12     | 6        | 0  | 0.231000  | -2.012000  | 5.807000      |
| 13     | 6        | 0  | 2.088000  | -2.935000  | 4.257000      |
| 14     | 1        | 0  | 1.754000  | -3.803000  | 4.272000      |

| 15 | 6 | 0 | 3.229000  | -2.632000 | 3.544000 |
|----|---|---|-----------|-----------|----------|
| 16 | 1 | 0 | 3.673000  | -3.304000 | 3.077000 |
| 17 | 6 | 0 | -1.121000 | -0.432000 | 7.145000 |
| 18 | 6 | 0 | -3.083000 | -0.669000 | 8.506000 |
| 19 | 1 | 0 | -3.767000 | -1.210000 | 8.831000 |
| 20 | 6 | 0 | -1.070000 | 0.945000  | 7.514000 |
| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |
| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | 6 | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |

| 39   | 6 | 0 | 2.290000  | 4.086000 | 4.926000 |
|------|---|---|-----------|----------|----------|
| 40   | 1 | 0 | 1.690000  | 3.910000 | 4.237000 |
| 41   | 7 | 0 | 4.341000  | 2.259000 | 7.324000 |
| 42   | 6 | 0 | 5.033000  | 4.918000 | 7.975000 |
| 43   | 1 | 0 | 5.266000  | 5.789000 | 8.202000 |
| 44   | 7 | 0 | -0.053000 | 1.692000 | 6.960000 |
| 45   | 6 | 0 | 5.195000  | 2.553000 | 8.289000 |
| 46   | 1 | 0 | 5.559000  | 1.850000 | 8.777000 |
| 47   | 6 | 0 | 5.589000  | 3.860000 | 8.627000 |
| 48   | 1 | 0 | 6.226000  | 4.003000 | 9.290000 |
| 49   | 1 | 0 | 3.699068  | 1.161785 | 7.098658 |
| 50   | 1 | 0 | 2.295563  | 0.632773 | 7.080789 |
| <br> |   |   |           |          |          |

### Table S8. XYZ coordinates for (1c')

\_\_\_\_\_

| Center Atomic |           | nic A | tomic     | Coordinates (Angstroms) |      |          |
|---------------|-----------|-------|-----------|-------------------------|------|----------|
| Number        | er Number |       | Туре      |                         | Y    | Z        |
| 1             | 28        | 0     | 1.102000  | 0.624                   | 4000 | 5.869000 |
| 2             | 7         | 0     | 1.951000  | -0.671                  | 000  | 4.909000 |
| 3             | 7         | 0     | 2.551000  | 1.706                   | 000  | 5.241000 |
| 4             | 7         | 0     | -0.069000 | -0.755                  | 5000 | 6.273000 |
| 5             | 8         | 0     | 4.450000  | 1.553                   | 000  | 3.904000 |
| 6             | 8         | 0     | -0.359000 | -3.068                  | 3000 | 6.047000 |

| 7  | 6 | 0 | 3.435000  | 1.073000  | 4.424000 |
|----|---|---|-----------|-----------|----------|
| 8  | 6 | 0 | 1.454000  | -1.925000 | 4.945000 |
| 9  | 6 | 0 | 3.067000  | -0.360000 | 4.233000 |
| 10 | 6 | 0 | 3.718000  | -1.333000 | 3.516000 |
| 11 | 1 | 0 | 4.476000  | -1.125000 | 3.020000 |
| 12 | 6 | 0 | 0.231000  | -2.012000 | 5.807000 |
| 13 | 6 | 0 | 2.088000  | -2.935000 | 4.257000 |
| 14 | 1 | 0 | 1.754000  | -3.803000 | 4.272000 |
| 15 | 6 | 0 | 3.229000  | -2.632000 | 3.544000 |
| 16 | 1 | 0 | 3.673000  | -3.304000 | 3.077000 |
| 17 | 6 | 0 | -1.121000 | -0.432000 | 7.145000 |
| 18 | 6 | 0 | -3.083000 | -0.669000 | 8.506000 |
| 19 | 1 | 0 | -3.767000 | -1.210000 | 8.831000 |
| 20 | 6 | 0 | -1.070000 | 0.945000  | 7.514000 |
| 21 | 6 | 0 | -3.035000 | 0.626000  | 8.894000 |
| 22 | 1 | 0 | -3.666000 | 0.955000  | 9.492000 |
| 23 | 6 | 0 | -2.026000 | 1.481000  | 8.392000 |
| 24 | 6 | 0 | -0.008000 | 2.983000  | 7.263000 |
| 25 | 1 | 0 | 0.664000  | 3.504000  | 6.889000 |
| 26 | 6 | 0 | -0.923000 | 3.593000  | 8.117000 |
| 27 | 1 | 0 | -0.863000 | 4.504000  | 8.291000 |
| 28 | 6 | 0 | -1.911000 | 2.850000  | 8.699000 |
| 29 | 1 | 0 | -2.505000 | 3.246000  | 9.294000 |
| 30 | 6 | 0 | -2.136000 | -1.228000 | 7.630000 |

| 31 | 1 | 0 | -2.194000 | -2.121000 | 7.382000 |
|----|---|---|-----------|-----------|----------|
| 32 | 6 | 0 | 2.887000  | 3.047000  | 5.587000 |
| 33 | б | 0 | 3.801000  | 3.317000  | 6.641000 |
| 34 | 6 | 0 | 4.102000  | 4.672000  | 6.962000 |
| 35 | 6 | 0 | 3.444000  | 5.708000  | 6.270000 |
| 36 | 1 | 0 | 3.612000  | 6.593000  | 6.501000 |
| 37 | 6 | 0 | 2.573000  | 5.433000  | 5.277000 |
| 38 | 1 | 0 | 2.156000  | 6.126000  | 4.821000 |
| 39 | 6 | 0 | 2.290000  | 4.086000  | 4.926000 |
| 40 | 1 | 0 | 1.690000  | 3.910000  | 4.237000 |
| 41 | 7 | 0 | 4.341000  | 2.259000  | 7.324000 |
| 42 | 6 | 0 | 5.033000  | 4.918000  | 7.975000 |
| 43 | 1 | 0 | 5.266000  | 5.789000  | 8.202000 |
| 44 | 7 | 0 | -0.053000 | 1.692000  | 6.960000 |
| 45 | 6 | 0 | 5.195000  | 2.553000  | 8.289000 |
| 46 | 1 | 0 | 5.559000  | 1.850000  | 8.777000 |
| 47 | 6 | 0 | 5.589000  | 3.860000  | 8.627000 |
| 48 | 1 | 0 | 6.226000  | 4.003000  | 9.290000 |
| 49 | 1 | 0 | 4.101402  | 1.313434  | 7.103781 |
| 50 | 1 | 0 | 0.340426  | 1.161510  | 4.758330 |
|    |   |   |           |           |          |

## Table S9. XYZ coordinates for (TS1)

\_\_\_\_\_

| Center | nter Atomic   |   | Atomic    | Coordinates (Angstroms) |           |  |
|--------|---------------|---|-----------|-------------------------|-----------|--|
| Number | Jumber Number |   | Туре      | X Y                     | Z         |  |
| 1      | 28            | 0 | 0.676501  | 0.370518                | -0.318562 |  |
| 2      | 7             | 0 | 0.942547  | 2.169326                | -0.204829 |  |
| 3      | 7             | 0 | -1.133701 | 0.899165                | -0.647816 |  |
| 4      | 7             | 0 | 2.487884  | 0.302569                | 0.069218  |  |
| 5      | 8             | 0 | -2.426469 | 2.823458                | -0.855251 |  |
| 6      | 8             | 0 | 4.300223  | 1.643301                | 0.704048  |  |
| 7      | 6             | 0 | -1.349745 | 2.241672                | -0.672999 |  |
| 8      | 6             | 0 | 2.173220  | 2.615612                | 0.122421  |  |
| 9      | 6             | 0 | -0.093294 | 2.998551                | -0.401230 |  |
| 10     | 6             | 0 | 0.097324  | 4.354778                | -0.306715 |  |
| 11     | 1             | 0 | -0.605011 | 4.941613                | -0.468564 |  |
| 12     | 6             | 0 | 3.135020  | 1.485458                | 0.332265  |  |
| 13     | 6             | 0 | 2.402608  | 3.967267                | 0.248161  |  |
| 14     | 1             | 0 | 3.247001  | 4.287540                | 0.470941  |  |
| 15     | 6             | 0 | 1.353373  | 4.836788                | 0.035796  |  |
| 16     | 1             | 0 | 1.489837  | 5.753766                | 0.121451  |  |
| 17     | 6             | 0 | 3.041822  | -0.981635               | 0.193278  |  |
| 18     | 6             | 0 | 4.652026  | -2.724210               | 0.551901  |  |
| 19     | 1             | 0 | 5.528392  | -2.972693               | 0.742693  |  |

| 20 | 6 | 0 | 2.056688  | -1.984920 | -0.047183 |
|----|---|---|-----------|-----------|-----------|
| 21 | 6 | 0 | 3.726679  | -3.691858 | 0.358870  |
| 22 | 1 | 0 | 3.966845  | -4.586250 | 0.438799  |
| 23 | 6 | 0 | 2.393623  | -3.345680 | 0.036018  |
| 24 | 6 | 0 | -0.131146 | -2.456741 | -0.626020 |
| 25 | 1 | 0 | -0.986352 | -2.174190 | -0.853373 |
| 26 | 6 | 0 | 0.124182  | -3.824522 | -0.574820 |
| 27 | 1 | 0 | -0.548363 | -4.432512 | -0.779342 |
| 28 | 6 | 0 | 1.366426  | -4.272455 | -0.223961 |
| 29 | 1 | 0 | 1.533318  | -5.184301 | -0.157929 |
| 30 | 6 | 0 | 4.337618  | -1.355989 | 0.475834  |
| 31 | 1 | 0 | 4.994120  | -0.713960 | 0.614114  |
| 32 | 6 | 0 | -2.298794 | 0.087762  | -0.770608 |
| 33 | 6 | 0 | -3.112735 | -0.188888 | 0.360840  |
| 34 | 6 | 0 | -4.263178 | -1.013132 | 0.197225  |
| 35 | 6 | 0 | -4.532137 | -1.580700 | -1.063985 |
| 36 | 1 | 0 | -5.262429 | -2.147371 | -1.165809 |
| 37 | 6 | 0 | -3.743841 | -1.313321 | -2.125782 |
| 38 | 1 | 0 | -3.940160 | -1.684280 | -2.953986 |
| 39 | 6 | 0 | -2.612719 | -0.466220 | -1.981974 |
| 40 | 1 | 0 | -2.079187 | -0.287056 | -2.722879 |
| 41 | 7 | 0 | -2.744086 | 0.331961  | 1.573386  |
| 42 | 6 | 0 | -5.073747 | -1.242081 | 1.312576  |
| 43 | 1 | 0 | -5.841016 | -1.762299 | 1.240950  |

| 44 | 7 | 0 | 0.791646  | -1.539860 | -0.364681 |
|----|---|---|-----------|-----------|-----------|
| 45 | 6 | 0 | -3.534207 | 0.060469  | 2.597583  |
| 46 | 1 | 0 | -3.292019 | 0.389289  | 3.433090  |
| 47 | 6 | 0 | -4.717441 | -0.694159 | 2.506909  |
| 48 | 1 | 0 | -5.255255 | -0.818112 | 3.256027  |
| 49 | 1 | 0 | -1.525982 | 0.759592  | 1.563916  |
| 50 | 1 | 0 | -0.151591 | 0.309442  | 1.165902  |
|    |   |   |           |           |           |

## Table S10. XYZ coordinates for (TS2)

| Center | Atomic | ;   | Atomic    | Coordinate | es (Angstroms) |
|--------|--------|-----|-----------|------------|----------------|
| Number | Numb   | ber | Туре      | X Y        | Z              |
|        |        |     |           |            |                |
| 1      | 28     | 0   | 0.691363  | 0.360175   | -0.227619      |
| 2      | 7      | 0   | 1.368757  | 2.042507   | -0.131182      |
| 3      | 7      | 0   | -0.947419 | 1.178892   | -0.641017      |
| 4      | 7      | 0   | 2.456866  | -0.111129  | 0.071065       |
| 5      | 8      | 0   | -1.917249 | 3.345616   | -0.760537      |
| 6      | 8      | 0   | 4.626398  | 0.763576   | 0.459586       |
| 7      | 6      | 0   | -0.931242 | 2.533482   | -0.583319      |
| 8      | 6      | 0   | 2.696803  | 2.237096   | 0.108116       |
| 9      | 6      | 0   | 0.461464  | 3.038047   | -0.296043      |
| 10     | 6      | 0   | 0.894251  | 4.369162   | -0.200108      |
| 11     | 1      | 0   | 0.179832  | 5.171066   | -0.321029      |

| 12 | 6 | 0 | 3.415010  | 0.893754  | 0.234648  |
|----|---|---|-----------|-----------|-----------|
| 13 | 6 | 0 | 3.177266  | 3.534534  | 0.206039  |
| 14 | 1 | 0 | 4.229154  | 3.711337  | 0.392228  |
| 15 | 6 | 0 | 2.259727  | 4.610966  | 0.054108  |
| 16 | 1 | 0 | 2.620936  | 5.637901  | 0.133753  |
| 17 | 6 | 0 | 2.704490  | -1.498431 | 0.112403  |
| 18 | 6 | 0 | 3.901070  | -3.603389 | 0.312186  |
| 19 | 1 | 0 | 4.845156  | -4.118705 | 0.474069  |
| 20 | 6 | 0 | 1.493205  | -2.250111 | -0.105269 |
| 21 | 6 | 0 | 2.743994  | -4.346932 | 0.108427  |
| 22 | 1 | 0 | 2.777208  | -5.428470 | 0.112123  |
| 23 | 6 | 0 | 1.502145  | -3.682608 | -0.106962 |
| 24 | 6 | 0 | -0.832166 | -2.174966 | -0.512964 |
| 25 | 1 | 0 | -1.742671 | -1.585990 | -0.679182 |
| 26 | 6 | 0 | -0.895031 | -3.587638 | -0.526468 |
| 27 | 1 | 0 | -1.854297 | -4.068389 | -0.698123 |
| 28 | 6 | 0 | 0.257965  | -4.340031 | -0.326365 |
| 29 | 1 | 0 | 0.216289  | -5.427483 | -0.335115 |
| 30 | 6 | 0 | 3.900940  | -2.177154 | 0.316684  |
| 31 | 1 | 0 | 4.823830  | -1.622424 | 0.476704  |
| 32 | 6 | 0 | -2.233436 | 0.467440  | -0.828710 |
| 33 | 6 | 0 | -2.988201 | 0.192155  | 0.328895  |
| 34 | 6 | 0 | -4.267174 | -0.478576 | 0.214099  |
| 35 | 6 | 0 | -4.731537 | -0.841704 | -1.081943 |

| 36 | 1 | 0 | -5.691164 | -1.339256 | -1.167895 |
|----|---|---|-----------|-----------|-----------|
| 37 | 6 | 0 | -3.967241 | -0.559860 | -2.216825 |
| 38 | 1 | 0 | -4.332016 | -0.828455 | -3.207697 |
| 39 | 6 | 0 | -2.704666 | 0.106178  | -2.084437 |
| 40 | 1 | 0 | -2.100195 | 0.351910  | -2.953658 |
| 41 | 7 | 0 | -2.451775 | 0.564795  | 1.478518  |
| 42 | 6 | 0 | -4.951864 | -0.705644 | 1.431325  |
| 43 | 1 | 0 | -5.917601 | -1.202877 | 1.418769  |
| 44 | 7 | 0 | 0.322533  | -1.506083 | -0.309835 |
| 45 | 6 | 0 | -3.108015 | 0.333588  | 2.654580  |
| 46 | 1 | 0 | -2.611939 | 0.651093  | 3.580803  |
| 47 | 6 | 0 | -4.369677 | -0.291281 | 2.655776  |
| 48 | 1 | 0 | -4.875663 | -0.455578 | 3.607191  |
| 49 | 1 | 0 | 0.899714  | 1.025266  | 2.020479  |
| 50 | 1 | 0 | 1.690868  | 0.719272  | 3.447443  |
|    |   |   |           |           |           |

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.915(3)      | N1-Ni-N2   | 82.9(1)    |
| Ni–N2          | 1.822(2)      | N1-Ni-N3   | 165.9(1)   |
| Ni–N3          | 1.854(3)      | N1-Ni-N4   | 109.2(1)   |
| Ni-N4          | 1.914(4)      | N2-Ni-N3   | 83.1(1)    |
|                |               | N2-Ni-N4   | 167.9(2)   |
|                |               | N3-Ni-N4   | 84.8(1)    |
|                |               |            |            |

Table S11. Selected bond distances (Å) and angles (°) in optimized Ni(DQPD)·H<sub>2</sub>O.

Table S12. Selected bond distances (Å) and angles (°) in Ni(DQPD).

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.944         | N1-Ni-N2   | 83.0       |
| Ni–N2          | 1.851         | N1-Ni-N3   | 165.8      |
| Ni–N3          | 1.891         | N1-Ni-N4   | 109.1      |
| Ni–N4          | 1.940         | N2-Ni-N3   | 82.8       |
|                |               | N2-Ni-N4   | 167.9      |
|                |               | N3-Ni-N4   | 85.1       |

Table S13. Selected bond distances (Å) and angles (°) in optimized 1.

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.959         | N1-Ni-N2   | 82.8       |
| Ni-N2          | 1.854         | N1-Ni-N3   | 165.5      |
| Ni–N3          | 1.887         | N1-Ni-N4   | 109.3      |
| Ni-N4          | 1.939         | N2-Ni-N3   | 82.9       |
|                |               | N2-Ni-N4   | 167.8      |
|                |               | N3-Ni-N4   | 85.1       |

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.945         | N1-Ni-N2   | 83.1       |
| Ni–N2          | 1.851         | N1-Ni-N3   | 166.0      |
| Ni-N3          | 1.893         | N1-Ni-N4   | 108.9      |
| Ni-N4          | 1.939         | N2-Ni-N3   | 82.9       |
|                |               | N2-Ni-N4   | 167.9      |
|                |               | N3-Ni-N4   | 85.1       |

 Table S14. Selected bond distances (Å) and angles (°) in optimized 1a.

Table S15. Selected bond distances (Å) and angles (°) in optimized 1b.

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.942         | N1-Ni-N2   | 83.0       |
| Ni–N2          | 1.890         | N1-Ni-N3   | 165.5      |
| Ni–N3          | 1.874         | N1-Ni-N4   | 108.9      |
| Ni–N4          | 1.998         | N2-Ni-N3   | 82.6       |
| Ni-H           | 1.619         | N2-Ni-N4   | 159.6      |
|                |               | N3-Ni-N4   | 84.4       |

Table S16. Selected bond distances (Å) and angles (°) in optimized 1c.

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.933         | N1-Ni-N2   | 83.3       |
| Ni-N2          | 1.849         | N1-Ni-N3   | 166.1      |
| Ni-N3          | 1.889         | N1-Ni-N4   | 109.0      |
| Ni-N4          | 1.941         | N2-Ni-N3   | 82.8       |
| H–H            | 0.747         | N2-Ni-N4   | 167.8      |
|                |               | N3-Ni-N4   | 84.9       |

| Bond distances | Distances (Å) | Bond Angle | Angles (°) |
|----------------|---------------|------------|------------|
| Ni-N1          | 1.973         | N1-Ni-N2   | 81.1       |
| Ni-N2          | 1.977         | N1-Ni-N3   | 161.2      |
| Ni-N3          | 1.974         | N1-Ni-N4   | 116.5      |
| Ni-N4          | 2.070         | N2-Ni-N3   | 80.3       |
| Ni-H           | 1.450         | N2-Ni-N4   | 161.6      |
|                |               | N3-Ni-N4   | 82.3       |

 Table S17. Selected bond distances (Å) and angles (°) in optimized 2a.

Table S18. Selected bond distances (Å) and angles (°) in the transition state.

| Distances (Å) | Bond Angle                                                                 | Angles (°)                                                                                            |
|---------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1.960         | N1-Ni-N2                                                                   | 83.2                                                                                                  |
| 1.865         | N1-Ni-N3                                                                   | 164.8                                                                                                 |
| 1.902         | N1-Ni-N4                                                                   | 108.3                                                                                                 |
| 2.199         | N2-Ni-N3                                                                   | 82.4                                                                                                  |
| 1.651         | N2-Ni-N4                                                                   | 139.7                                                                                                 |
| 1.318         | N3-Ni-N4                                                                   | 80.4                                                                                                  |
|               | <b>Distances (Å)</b><br>1.960<br>1.865<br>1.902<br>2.199<br>1.651<br>1.318 | Distances (Å)Bond Angle1.960N1-Ni-N21.865N1-Ni-N31.902N1-Ni-N42.199N2-Ni-N31.651N2-Ni-N41.318N3-Ni-N4 |