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S1. SYMMETRY ANALYSIS

We have carried out a symmetry analysis for the methane-water complex, following

Dyke’s analysis for the water dimer [1].

S1.1. Molecular symmetry group

The permutation-inversion versions generated by the feasible operations obtained

by acting on a selected version of the dimer are shown in Figure S1 for all the

elements of the molecular symmetry (MS) group. Electronic structure computations

consistently show that the global minimum (GM) has Cs symmetry, and thus only

half of the structures (24 instead of 48 distinct labeled structures) in Figure S1

represent permutationally distinct minima that are not superimposable by rotation.

The permutation operations of the complex can be obtained by considering the

combinations of the permutation operations of the two monomers (there is no proton-

proton exchange between the monomers). Dore et al. [2] used the character table in

Table S8, and we follow their convention for the irreducible representations. (The

only difference between Table S8 and the character table of Ref. [2] is the explicit

indication of the inversion operations in the present work.) We note that in the

notation of Dore et al. [2] the even and odd spatial symmetry under the permutation

of the water hydrogens is distinguished by the + and − superscripts (and not by

the A/B irrep labels in C2v(M) of H2O). It is important to note that the even and

odd character of proton exchange for methane followed by inversion has different

subindexes in the + and − blocks.

S1.2. Cs symmetry of the equilibrium structure and tunneling splitting

pattern

In this section the irreps of the splitting pattern of a rovibrational state of the

dimer are determined. We consider a representation spanned by functions centered

in the wells of the distinct versions (Figure S1). Due to the Cs symmetry, there are

only 24 distinct wells (instead of 48), and each function, φ±

n (n = 1, 2, . . . , 24), is

conveniently chosen to be symmetric (A′) or antisymmetric (A′′) with respect to

2



E, (ab)

1

23

4

a
b

E

1

23

4

b
a

(ab)

{(123)}ncl=8, {(123)(ab)}ncl=8

2

31

4

b
a

a
b

(123)

(123)(ab)

2

43

1

b
a

a
b

(124)

(124)(ab)

3

24

1

b
a

a
b

(134)

(134)(ab)

1

34

2

b
a

a
b

(234)

(234)(ab)

3

12

4

b
a

a
b

(132)

(132)(ab)

4

13

2

b
a

a
b

(142)

(142)(ab)

4

21

3

b
a

a
b

(143)

(143)(ab)

1

42

3

b
a

a
b

(243)

(243)(ab)

{(12)(34)}ncl=3, {(12)(34)(ab)}ncl=3

2

1
4

3

b
a

a
b

(12)(34)

(12)(34)(ab)

3

41

2

b
a

a
b

(13)(24)

(13)(24)(ab)

4

32

1

b
a

a
b

(14)(23)

(14)(23)(ab)

{[(1234)]∗}ncl=6, {[(1234)(ab)]∗}ncl=6

2

3

4

1

a
b b

a

[(1234)]∗

[(1234)(ab)]∗

2

4

1

3

a
b b

a

[(1243)]∗

[(1243)(ab)]∗

3

4

2

1

a
b b

a

[(1324)]∗

[(1324)(ab)]∗

3

1

4

2

a
b b

a

[(1342)]∗

[(1342)(ab)]∗

4

3

1

2

a
b b

a

[(1423)]∗

[(1423)(ab)]∗

4

1

2

3

a
b b

a

[(1432)]∗

[(1432)(ab)]∗

{[(23)]∗}ncl=6, {[(23)(ab)]∗}ncl=6

2

1

3

4

a
b b

a

[(12)]∗

[(12)(ab)]∗

3

2

1

4

a
b b

a

[(13)]∗

[(13)(ab)]∗

4

2

3

1

a
b b

a

[(14)]∗

[(14)(ab)]∗

1

3

2

4

a
b b

a

[(23)]∗

[(23)(ab)]∗

1

4

3

2

a
b b

a

[(24)]∗

[(24)(ab)]∗

1

2

4

3

a
b b

a

[(34)]∗

[(34)(ab)]∗

FIG. S1: Mapping for a version of the global minimum structure of the methane-water

complex (labeling shown for the identity operation, E) with the elements of the molecular

symmetry group, G48 given in Table S8.

reflection about the symmetry plane. Thus, the characters of the representations

of A′ and A′′ symmetries (of the Cs group) can easily be constructed by observing

that all the group operations transform one version to another, except for a single

element of the {[(23)]∗}ncl=6 class. For example, if the atomic nuclei are labelled as in

the ‘parent’ version (E) in Figure S1, we notice that it is only the [(34)]∗ operation

that leaves it invariant up to a 180o rotation. There are four different permutation-

3



G48 E . . . . . . [(23)]∗

ncl 1 . . . . . . 6

ΓA′ 24 0 . . . 0 4
ΓA′′ 24 0 . . . 0 −4

TABLE S1: Characters of the elements of G48 spanned by the symmetric, A′ (Cs),

and anti-symmetric, A′′ (Cs), representations. The A′ and A′′ representations are com-

posed of Cs symmetric and Cs anti-symmetric functions centered at the rotationally non-

superimposable permutation-inversion versions of the plane-symmetric global minimum of

the CH4·H2O complex.

inversion versions (which reserve the parity of the CH4 moiety) that are left invariant

(up to a 180o rotation) by only one of the operations in the {[(23)]∗}ncl=6 class. With

this reasoning we obtain the characters of the A′ and A′′ representations listed in

Table S1. The A′ and A′′ representations can be decomposed into a direct sum of

irreducible representations of the G48 molecular symmetry group (see Table S8) as

ΓA′ = A+
1 ⊕ E+ ⊕ F+

1 ⊕ 2F+
2 ⊕ A−

2 ⊕ E− ⊕ 2F−

1 ⊕ F−

2 (S1)

ΓA′′ = A+
2 ⊕ E+ ⊕ 2F+

1 ⊕ F+
2 ⊕ A−

1 ⊕ E− ⊕ F−

1 ⊕ 2F−

2 . (S2)

We assume that the tunneling splitting of the zero-point vibration with J = 0

corresponds to the ΓA′ representation (see Eq. (5) of the main text), and thus the

symmetry of the zero-point vibrational (ZPV) splitting manifold is given by Eq. (S1).

For certain excited vibrational states (anti-symmetric with respect to the symmetry

plane of the equilibrium structure) or for a totally symmetric vibrational state with

J > 0 irreps in Eq. (S2) also become accessible.

S1.3. Spin functions

In order to determine which irreps of the spatial wave function are allowed by the

Pauli principle, we consider the representation of G48 spanned by all the primitive

spin functions of the hydrogens of CH4·H2O. Altogether 24 · 22 = 64 spin functions

can be constructed for the protons, (σσσσ).(σσ′), where σ = α, β labels a proton

spin function of CH4 and σ′ = α′, β′ is the spin function of a proton in the H2O

moiety. The characters of this representation span by all possible spin functions
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G48 E (123) (14)(23) [(1423)(ab)]∗ [(23)(ab)]∗ (ab) (123)(ab) (14)(23)(ab) [(1423)]∗ [(23)]∗

ncl 1 8 3 6 6 1 8 3 6 6

Γspin 64 16 16 4 16 32 8 8 8 32

TABLE S2: Characters of the classes of G48 for the representation spanned by the elemen-

tary spin functions of the protons in CH4·H2O.

can be constructed by observing that only those functions contribute to the trace

of the representation matrix of a symmetry operation that contain the same spin

functions for the particles included in a permutation cycle (the inversion does not

have any effect on the spin functions). For example, the character of (123) is ob-

tained by counting the number of functions left invariant, which must have the form

(ααα/βββ)(α/β)(α′/β′)(α′/β′), producing 24 = 16 possibilities.

The 64-dimensional spin representation, Table S2, is reducible to the direct sum

Γspin = 15A+
1 ⊕ 3E+ ⊕ 9F+

2 ⊕ 5A−

2 ⊕ 1E− ⊕ 3F−

1 (in G48). (S3)

We note that the same result could have been obtained by forming a direct product

of the symmetry-adapted spin functions of CH4 and H2O (there are no exchanges

between the methane and water moieties in the MS group). The 64-dimensional

representation of the elements of the MS group of CH4, Td(M), would reduce to the

direct sum

Γspin = 4 · (5A1 ⊕ E⊕ 3F2) (in Td(M)). (S4)

The symmetry-adapted spin functions can also be constructed and characterized

with the total spin quantum number, I, and with its projection to the laboratory-

fixed Z axis, mI . The 5A1 functions have I = 2, mI = −2,−1, 0, 1, 2. There are three

sets of functions with I = 1, mI = −1, 0, 1 corresponding to F2 and a degenerate

pair of I = 0,mI = 0 functions, according to the didactic explanation of Ref. [3].

If we consider the permutation group of two elements for the protons of water

and label the symmetric and the antisymmetric representations with A+ and A−

(we choose this notation to arrive at a labeling convention similar to G48 introduced
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TABLE S3: Symmetry decomposition of the direct product of two irreps in the G48 group

(Table S8).

⊗ A+
1 A+

2 E+ F+
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2
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in Ref. [2]), we obtain:

Γspin = 16 · (3A+ ⊕ A−) (in S2). (S5)

The three spin functions of A+ symmetry correspond to I ′ = 1,mI′ = −1, 0, 1

(ortho-H2O) and the spin function of A− symmetry has I ′ = 0,mI′ = 0 (para-H2O).

We note that Eqs. (S4) and (S5) are indeed in agreement with Eq. (S3), and we

conclude that the spin functions belonging to Γ+ irreps correspond to ortho-H2O,

whereas the spin functions in the Γ− irreps correspond to para-H2O.

S1.4. Spin-statistical weights

The Fermi–Dirac statistics (the ‘Pauli principle’ for fermions) requires that the

total wave function remains invariant under the effect of even permutations, and

changes sign under odd permutation operations (only ‘pure’ permutations and not

permutation-inversions need to be considered). Since the MS group of methane does

not contain any odd permutations (only odd permutation-inversion operations), we

observe that both the A1 and A2 irreps satisfy the Pauli principle for methane. When

the permutation of the protons of the H2O moiety is also considered, we conclude

that the total wave function satisfies Fermi–Dirac statistics if it transforms as the

A−

1 or A−

2 irreps of G48. Table S4 lists the combinations of the spatial and the spin

functions that satisfy this requirement (we also used the irrep multiplication table,

Table S3), and it also contains the spin statistical weights, which were calculated by

considering the number of spin functions of a given species.
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TABLE S4: Spin-statistical weights, nsw, of the spatial functions of CH4·H2O.

Γspatial nΓi
Γspin Γspatial ⊗ nΓi

Γspin nsw = nA−

1

+ nA−

2

ortho/para

A+
1 { 0A−

1 A+
1 ⊗ 0A−

1 = 0A−

1 } 5 para5A−

2 A+
1 ⊗ 5A−

2 = 5A−

2

A+
2 { 5A−

2 A+
2 ⊗ 5A−

2 = 5A−

1 } 5 para0A−

1 A+
2 ⊗ 0A−

1 = 0A−

2

E+ 1E− E+ ⊗ 1E− = A−

1 ⊕ A−

2 ⊕ E− 2 para

F+
1 { 3F−

1 F+
1 ⊗ 3F−

1 = 3(A−

1 ⊕ E− ⊕ F−

1 ⊕ F−

2 ) } 3 para0F−

2 F+
1 ⊗ 0F−

2 = 0(A−

2 ⊕ E− ⊕ F−

1 ⊕ F−

2 )

F+
2 { 0F−

2 F+
2 ⊗ 0F−

2 = 0(A−

1 ⊕ E− ⊕ F−

1 ⊕ F−

2 ) } 3 para3F−

1 F+
2 ⊗ 3F−

1 = 3(A−

2 ⊕ E− ⊕ F−

1 ⊕ F−

2 )

A−

1 { 15A+
1 A−

1 ⊗ 15A+
1 = 15A−

1 } 15 ortho0A+
2 A−

1 ⊗ 0A+
2 = 0A−

2

A−

2 { 0A+
2 A−

2 ⊗ 0A+
2 = 0A−

1 } 15 ortho15A+
1 A−

2 ⊗ 15A+
1 = 15A−

2

E− 3E+ E− ⊗ 3E+ = 3(A−

1 ⊕ A−

2 ⊕ E−) 6 ortho

F−

1 { 0F+
1 F−

1 ⊗ 0F+
1 = 0(A−

1 ⊕ E− ⊕ F−

1 ⊕ F−

2 ) } 9 ortho9F+
2 F−

1 ⊗ 9F+
2 = 9(A−

2 ⊕ E− ⊕ F−

1 ⊕ F−

2 )

F−

2 { 9F+
2 F−

2 ⊗ 9F+
2 = 9(A−

1 ⊕ E− ⊕ F−

1 ⊕ F−

2 ) } 9 ortho0F+
1 F−

2 ⊗ 0F+
1 = 0(A−

2 ⊕ E− ⊕ F−

1 ⊕ F−

2 )

S1.5. Selection rules for electric dipole transitions

Similarly to Dyke’s reasoning for the water dimer [1], we can identify the symme-

try species corresponding to the projection of the molecular electric dipole moment

along an axis fixed in space by identifying the irrep that is invariant to the permuta-

tion of identical nuclei but changes sign under inversion. Hence, −µ ·E transforms

like A+
2 in G48 and any transition is allowed that connects initial, ‘i’, and final, ‘f’,

states with the same spin function and for which the transition moment with the

initial and final spatial functions is non-vanishing:

〈χspin,f |χspin,i〉 6= 0 (S6)
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and

Γspatial,f ⊗ A+
2 ⊗ Γspatial,i ⊃ A+

1 ⇔ Γspatial,f ⊗ Γspatial,i ⊃ A+
2 . (S7)

Therefore, an electric dipole transition can be allowed between pairs of states, f ↔ i,

of the following symmetries

A±

1 ↔ A±

2 or F±

1 ↔ F±

2 or E± ↔ E± (S8)

From Table S4 we see that the spatial states connected by an electric dipole transi-

tion, Eq. (S8), have exactly the same set of spin functions allowed by the Fermi–Dirac

statistics. Hence the spin statistical weight of each transition equals the statistical

weight, nsw, of the initial (and the final) state.

S1.6. The case of a near symmetric rotor

Our symmetry analysis has been exact up to this point. The CH4·H2O dimer,

similarly to the water dimer, is a near prolate symmetric top, the rotational constants

of the global minimum structure of the main text are

Ae = 4.229 cm−1 ≫ Be = 0.159 cm−1 ≈ Ce = 0.158 cm−1. (S9)

In this subsection we discuss the symmetry consequences of the near-symmetric rotor

character of the methane-water complex by noting that K is nearly a good quantum

number (corresponding to the projection of the rotational angular momentum onto

the molecular near symmetry axis).

For this purpose, we define the (right-handed) body-fixed (BF) frame by choos-

ing the z axis going from the center of mass of HaHbO to the center of mass of

CH1H2H3H4. The y axis is fixed by the bisector of HaHbO and points towards the

center of mass of HaHb. (We note that this BF frame cannot be defined if the bisec-

tor is parallel with the z axis.) In Table S5 we collect the transformation properties

of this BF frame, and the corresponding Euler angles and symmetrized rotational

8



TABLE S5: Transformation properties of the the body-fixed frame and the corresponding

Euler angles and Wang functions upon the permutation-inversion operations of CH4·H2O

in G48.

G48 E (123) (14)(23) [(1423)(ab)]∗ [(23)(ab)]∗ (ab) (123)(ab) (14)(23)(ab) [(1423)]∗ [(23)]∗

ncl 1 8 3 6 6 1 8 3 6 6

BF transf. a E E E Rx(π)
b Rx(π)

b E E E Rx(π)
b Rx(π)

b

(α, β, γ) (α, β, γ) (α, β, γ) (α, β, γ) (π + α, π − β,−γ) (π + α, π − β,−γ) (α, β, γ) (α, β, γ) (α, β, γ) (π + α, π − β,−γ) (π + α, π − β,−γ)

D
(J),∗
M,K D

(J),∗
M,K D

(J),∗
M,K D

(J),∗
M,K (−1)JD

(J),∗
M,−K (−1)JD

(J),∗
M,−K D

(J),∗
M,K D

(J),∗
M,K D

(J),∗
M,K (−1)JD

(J),∗
M,−K (−1)JD

(J),∗
M,−K

Γ(Ψ
(±)
JKM):

J even, K = 0 1 1 1 1 1 1 1 1 1 1 A+
1

J odd, K = 0 1 1 1 −1 −1 1 1 1 −1 −1 A+
2

J even, K 6= 0, Ψ(+) 1 1 1 1 1 1 1 1 1 1 A+
1

J odd, K 6= 0, Ψ(+) 1 1 1 −1 −1 1 1 1 −1 −1 A+
2

J even, K 6= 0, Ψ(−) 1 1 1 −1 −1 1 1 1 −1 −1 A+
2

J odd, K 6= 0, Ψ(−) 1 1 1 1 1 1 1 1 1 1 A+
1

a: BF transf: the rotational operation corresponding to the change in orientation of
the body-fixed frame (BF) described in the text.
b: Rx(π) is a 180o rotation of the body-fixed frame around the x axis.

Wang functions

ΨJ0M = D
(J),∗
M,0 (α, β, γ) (S10)

Ψ
(±)
JKM =

1√
2

(

D
(J),∗
M,K (α, β, γ)±D

(J),∗
M,−K(α, β, γ)

)

(K ≥ 1). (S11)

According to Table S5, the approximate symmetry assignment for the rotational

functions of CH4·H2O using the symmetric rotor eigenfunctions, Ψ
(±)
JKM , with the

quantum number K, which is nearly exact for (the near prolate) CH4·H2O, is

A+
1 : J = 0,

J even and K = 0,

J even and K 6= 0 and Ψ(+),

J odd and K 6= 0 and Ψ(−) (S12)

A+
2 : J odd and K = 0,

J odd and K 6= 0 and Ψ(+),

J even and K 6= 0 and Ψ(−). (S13)

By comparing this result with the electric dipole selection rules, Eqs. (S6)–(S8),

which allow transitions between rovibrational levels of symmetries related by
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Γspatial,f/i = Γspatial,i/f ⊗ A+
2 , we conclude that this selection rule simplifies to the re-

quirement that the appropriate rovibrational transitions connect levels of the same

vibrational symmetry. Table S4 shows that the same spin functions can be assigned

to the ‘i’ and ‘f’ spatial functions related by this relationship; thus, the spin selection

rule, Eq. (S6), is automatically satisfied.
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TABLE S6: Character table of the molecular symmetry group of H2O (Table A-5 in [4]).

C2v(M) E (ab) E∗ [(ab)]∗

ncl 1 1 1 1

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

TABLE S7: Character table of the molecular symmetry group of CH4 (Table A-14 in [4]).

Td(M) E (123) (14)(23) [(1423)]∗ [(23)]∗

ncl 1 8 6 6

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 1 −1
F2 3 0 −1 −1 1

TABLE S8: Character table of the molecular symmetry group of CH4·H2O, G48 (the table

is taken from Ref. [2] but with explicit notation for space inversion). The green dashed

box indicates the subgroup of elements without inversion, G24, and their corresponding

irreps are the same as those of the full group but without the 1 and 2 subscripts.

G48 E (123) (14)(23) [(1423)(ab)]∗ [(23)(ab)]∗ (ab) (123)(ab) (14)(23)(ab) [(1423)]∗ [(23)]∗

ncl 1 8 3 6 6 1 8 3 6 6

A+
1 1 1 1 1 1 1 1 1 1 1

A+
2 1 1 1 −1 −1 1 1 1 −1 −1

E+ 2 −1 2 0 0 2 −1 2 0 0
F+
1 3 0 −1 1 −1 3 0 −1 1 −1

F+
2 3 0 −1 −1 1 3 0 −1 −1 1

A−

1 1 1 1 1 1 −1 −1 −1 −1 −1
A−

2 1 1 1 −1 −1 −1 −1 −1 1 1
E− 2 −1 2 0 0 −2 1 −2 0 0
F−

1 3 0 −1 1 −1 −3 0 1 −1 1
F−

2 3 0 −1 −1 1 −3 0 1 1 −1

11



S2. A MINIMUM-ENERGY PATHWAY
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FIG. S2: Minimum-energy pathway connecting the global and the secondary minima on

the AOSz05 PES [5].
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S3. LIST OF EIGENVALUES

TABLE S9: The first 70 J = 0 vibrational energy levels of the CH4·H2O dimer computed

with the GENIUSH code using the AOSz05 PES [5] and the QCHB15 PES [6] with two

different basis sets. The zero-point vibrational energies (ZPVE) are reported first, all other

energy values are relative to the ZPVE values. All values are in cm−1. SG refers to the

smaller grid described in Section 2. A larger grid (LG) is obtained from SG by using 101

unscaled Legendre DVR points for the q5 = cosβ degree of freedom.

AOSz05 [5] QCHB15 [6] AOSz05 [5] QCHB15 [6]

J0.n ν̃(SG) ν̃(LG) ν̃(SG) ν̃(LG) J0.n ν̃(SG) ν̃(LG) ν̃(SG) ν̃(LG)

1 206.792 206.801 215.637 215.642 36 48.672 48.685 48.215 48.328
2 4.763 4.763 4.584 4.587 37 50.514 50.628 51.933 52.058
3 4.763 4.764 4.584 4.588 38 50.514 50.628 51.933 52.058
4 4.765 4.764 4.596 4.588 39 50.620 50.632 52.043 52.064
5 6.930 6.934 7.059 7.062 40 53.260 53.328 52.200 52.237
6 11.177 11.190 11.084 11.087 41 53.260 53.329 52.205 52.240
7 11.193 11.192 11.088 11.090 42 53.315 53.329 52.205 52.240
8 11.193 11.192 11.088 11.090 43 53.935 53.977 54.499 54.532
9 28.919 29.001 30.338 30.422 44 54.039 54.095 55.553 55.617
10 28.938 29.002 30.350 30.423 45 54.039 54.095 55.553 55.617
11 28.938 29.002 30.350 30.423 46 54.108 54.097 55.622 55.619
12 32.600 32.630 32.383 32.388 47 56.540 56.650 57.486 57.630
13 32.600 32.630 32.383 32.388 48 56.540 56.651 57.486 57.631
14 32.614 32.630 32.387 32.391 49 56.652 56.651 57.650 57.631
15 32.701 32.705 32.562 32.578 50 61.393 61.669 61.494 61.684
16 32.701 32.705 32.562 32.579 51 61.393 61.669 61.494 61.684
17 32.708 32.708 32.565 32.579 52 61.490 61.677 61.691 61.693
18 34.407 34.405 35.827 35.834 53 61.490 61.687 62.397 62.703
19 35.740 35.880 36.287 36.369 54 61.673 61.687 62.397 62.703
20 35.740 35.880 36.287 36.369 55 61.690 61.694 62.686 62.710
21 36.257 36.317 36.346 36.428 56 63.441 63.460 65.358 65.429
22 36.257 36.317 36.346 36.428 57 63.441 63.460 65.675 65.710
23 36.323 36.322 36.486 36.530 58 64.196 64.168 65.675 65.710
24 36.365 36.397 36.486 36.530 59 64.514 64.576 65.835 65.818
25 36.365 36.397 36.535 36.536 60 65.631 65.821 66.060 66.133
26 41.102 41.104 41.599 41.598 61 65.744 65.823 66.065 66.137
27 41.102 41.105 41.599 41.600 62 65.744 65.823 66.118 66.137
28 41.125 41.105 41.603 41.600 63 65.992 66.070 66.118 66.281
29 45.766 45.916 46.982 47.071 64 66.053 66.075 66.219 66.284
30 45.827 45.916 47.008 47.123 65 66.071 66.075 66.219 66.284
31 45.827 45.917 47.008 47.123 66 66.071 66.156 66.365 66.475
32 47.156 47.253 47.056 47.125 67 71.052 71.303 70.355 70.625
33 47.156 47.253 47.498 47.536 68 71.261 71.309 70.589 70.632
34 47.966 48.000 47.498 47.536 69 71.261 71.309 70.589 70.632
35 47.966 48.000 48.215 48.328 70 71.910 72.132 72.772 72.987
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TABLE S10: The first 150 J = 1 and 2 rovibrational energy levels of the CH4·H2O dimer

computed with the GENIUSH code using the AOSz05 PES [5]. The zero-point vibrational

energies (ZPVE) are reported first, all other energy values are relative to the ZPVE values.

All values are given in cm−1.

J = 1 J = 2

J1.n ν̃ J1.n ν̃ J1.n ν̃ J2.n ν̃ J2.n ν̃ J2.n ν̃

1 0.289 51 36.007 101 51.353 1 0.867 51 31.157 101 43.539
2 5.044 52 36.007 102 53.514 2 5.605 52 31.202 102 43.550
3 5.044 53 36.542 103 53.514 3 5.607 53 31.202 103 45.246
4 5.045 54 36.542 104 53.567 4 5.607 54 32.764 104 45.309
5 7.219 55 36.609 105 54.070 5 7.796 55 32.764 105 45.341
6 7.905 56 36.649 106 54.085 6 8.485 56 32.770 106 45.341
7 7.909 57 36.649 107 54.135 7 8.490 57 32.770 107 45.477
8 7.911 58 38.926 108 54.135 8 8.490 58 32.788 108 45.477
9 7.911 59 38.926 109 54.174 9 8.497 59 32.788 109 46.677
10 7.915 60 40.331 110 54.174 10 8.501 60 33.464 110 46.741
11 7.915 61 40.331 111 54.207 11 8.501 61 33.464 111 46.741
12 11.457 62 40.376 112 54.334 12 12.019 62 33.480 112 47.132
13 11.475 63 40.376 113 54.334 13 12.039 63 33.571 113 47.132
14 11.475 64 40.379 114 54.389 14 12.039 64 33.571 114 48.009
15 13.113 65 40.380 115 54.430 15 13.682 65 33.578 115 48.009
16 13.113 66 41.381 116 54.439 16 13.682 66 34.185 116 48.808
17 14.543 67 41.381 117 54.470 17 15.120 67 34.185 117 48.808
18 14.543 68 41.404 118 54.470 18 15.120 68 34.187 118 49.496
19 14.552 69 42.998 119 54.476 19 15.130 69 34.187 119 49.603
20 14.554 70 43.001 120 54.476 20 15.136 70 34.188 120 49.606
21 14.555 71 44.728 121 54.571 21 15.136 71 34.188 121 49.606
22 14.555 72 44.750 122 54.571 22 15.137 72 35.210 122 49.620
23 19.329 73 44.809 123 56.813 23 19.895 73 36.540 123 49.814
24 19.329 74 44.809 124 56.813 24 19.895 74 36.540 124 49.814
25 26.361 75 44.933 125 56.921 25 23.320 75 37.111 125 50.858
26 26.363 76 44.933 126 56.965 26 23.320 76 37.111 126 50.858
27 29.189 77 46.071 127 56.965 27 26.374 77 37.180 127 51.233
28 29.209 78 46.133 128 57.216 28 26.374 78 37.217 128 51.233
29 29.209 79 46.133 129 57.216 29 26.375 79 37.217 129 51.326
30 29.427 80 46.568 130 57.239 30 26.375 80 37.479 130 51.839
31 29.433 81 46.568 131 57.262 31 26.388 81 37.479 131 51.866
32 29.729 82 47.440 132 57.262 32 26.388 82 37.537 132 51.866
33 29.731 83 47.440 133 57.265 33 26.937 83 37.537 133 51.946
34 29.760 84 48.247 134 59.296 34 26.944 84 37.546 134 51.963
35 29.760 85 48.247 135 59.315 35 29.662 85 37.546 135 51.963
36 29.765 86 48.946 136 61.438 36 29.662 86 37.564 136 52.163
37 29.765 87 49.058 137 61.449 37 29.730 87 37.564 137 52.163
38 30.474 88 49.058 138 61.634 38 29.752 88 38.531 138 52.191
39 30.474 89 49.060 139 61.634 39 29.752 89 38.531 139 52.191
40 30.588 90 49.065 140 61.663 40 29.995 90 39.505 140 52.227
41 30.588 91 49.266 141 61.663 41 30.012 91 39.505 141 52.228
42 30.633 92 49.266 142 61.715 42 30.294 92 40.883 142 54.022
43 30.633 93 50.749 143 61.715 43 30.301 93 40.883 143 54.022
44 32.888 94 50.749 144 61.839 44 30.328 94 40.928 144 54.071
45 32.888 95 50.848 145 61.839 45 30.328 95 40.928 145 54.590
46 32.902 96 51.283 146 61.952 46 30.336 96 40.928 146 54.634
47 32.991 97 51.310 147 61.984 47 30.336 97 40.933 147 54.642
48 32.991 98 51.310 148 62.975 48 31.043 98 41.939 148 54.720
49 32.998 99 51.326 149 62.975 49 31.043 99 41.939 149 54.750
50 34.675 100 51.353 150 63.179 50 31.157 100 41.963 150 54.909
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S4. ENERGY DECOMPOSITION TABLES

For the present study, we introduced a very simple energy decomposition scheme to

better understand the tunneling splitting manifold. Using the short-hand notation

〈Ô〉J,i = 〈Ψrv
J,i|Ô|Ψrv

J,i〉, we write the rovibrational energy corresponding to the Ψrv
J,i

wave function as a sum

Erv
J,i = 〈Ψrv

J,i|Ĥ|Ψrv
J,i〉 = 〈T̂ 〉J,i + 〈V̂ 〉J,i (S14)

To trace high excitations of the rotational monomer states, and separate them from

‘non-spinning’ monomer states, we further partition the kinetic energy terms as

〈T̂ 〉J,i = 〈T̂ v〉J,i + 〈T̂ rv〉J,i + 〈T̂ r〉J,i
= 〈T̂ v

R〉J,i + 〈T̂ v
θ,φ〉J,i + 〈T̂ v

α,β,γ〉J,i + 〈T̂ v
cpl〉J,i

+ 〈T̂ rv
R 〉J,i + 〈T̂ rv

θ,φ〉J,i + 〈T̂ rv
α,β,γ〉J,i + 〈T̂ rv

cpl〉J,i + 〈T̂ r〉J,i
︸ ︷︷ ︸ ︸ ︷︷ ︸

H2O CH4

(S15)

Using the GENIUSH program, these energy contributions are obtained in a post-

processing step for the calculated eigenvectors (wave functions). This post-processing

step amounts to a single matrix multiplication of the computed eigenvectors used

as a trial vector with the highlighted terms of the Hamiltonian matrix, and then

forming the scalar product of the product vector with the original one.

Figures S3, S4, and S5 show the result of the energy decomposition by visual-

izing the energy contribution of the different terms (and hence different rotors) of

the Hamiltonian to the total rovibrational energy of variationally computed energy

levels of the complex with J = 0, 1, and 2, respectively. First of all, we observe in

these figures that the potential energy contributions as well as the kinetic energy

contributions of the intermolecular stretching exhibit very small variations over the

studied energy range. However, there are more significant variations in the kinetic

energy contributions to the angular part of the water and the methane monomers

and in the kinetic energy coupling terms.

Although in GENIUSH we use numerical kinetic energy operators constructed on

the fly, the analytic form of the Hamiltonian of two coupled polyatomic molecules [7]
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FIG. S3: Decomposition of the total vibrational energy among the different terms of the

Hamiltonian for the first 25 J = 0 vibrational states of the CH4·H2O dimer.

can also enhance our understanding of the contributions of the various terms. For

example, in Figure S3, we can observe that 〈T̂ (v)
H2O

〉 provides larger contributions

to the ortho states than to the para states, which qualitatively indicates that the

water moiety has larger (internal) rotational energy in the ortho levels than in the

corresponding para levels (compare, for example, J0.1 and J0.5 in Figure S3).
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FIG. S4: Decomposition of the total rovibrational energy among the different terms of the

Hamiltonian for the first 80 J = 1 rovibrational states of the CH4·H2O dimer (the 〈T̂ rv
R 〉n

contribution is zero, not shown).
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〈Ô〉 [cm−1]
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FIG. S5: Decomposition of the total rovibrational energy among the different terms of the

Hamiltonian for the first 120 J = 2 rovibrational states of the CH4·H2O dimer (the 〈T̂ rv
R 〉n

contribution is zero, not shown).
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S5. SELECTED DVR PLOTS

FIG. S6: Two-dimensional (cosβ–γ; φ–γ; φ–cosβ) cuts of the six-dimensional vibrational

wave functions in DVR of the first set of triple-degenerate states, (4.8 cm−1, J0.2–4) of

CH4·(para-H2O).
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FIG. S7: Two-dimensional (cosβ–γ; φ–γ; φ–cosβ) cuts of the six-dimensional vibrational

wave functions in DVR of the first set of triple-degenerate states, (11.2 cm−1, J0.6–8) of

CH4·(ortho-H2O).

FIG. S8: Selected two-dimensional cuts of the six-dimensional vibrational wave functions

in DVR. Top: J0.1, J0.36, and J0.40, bottom: J0.41, J0.42, J0.43.
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