Supplementary Information

Strain-induced Electrostatic Enhancements of BiFeO₃ Nanowire Loops

Jun Liu, Kovur Prashanthi, Zhi Li, Ryan T. McGee, Kaveh Ahadi and Thomas Thundat

1. Electrospinning fabrication of BiFeO₃ nanowires

The synthesis of BFO nanowires by electrospinning method has been well-developed in our previous studies¹⁻³. In a typical process, the BFO sol–gel precursor solution was prepared by dissolving 4 g Bi(NO₃)₃·5H₂O and 3 g Fe(NO₃)₃·9H₂O salts in 10 mL 2-methoxyethanol. The pH value of the solution was adjusted to 4 by adding ethanolamine. This mixture was magnetically stirred for 2 hours at room temperature. The polymer solution of 15 wt% was prepared by dissolving nylon-6 crystals to formic acid. The prepared BFO solution was added to this polymer solution drop by drop to obtain a homogeneous BFO precursor solution for the electrospinning process. A home-made electrospinning unit was used for the fabrication of BFO NWs. The obtained nylon-6/BFO gel was electrospun onto the Pt/Ti/SiO₂/Si substrates with an applied voltage of 20 kV and feeding rate of 0.3 ml/h. The distance between the needle tip and the target was kept at 20 cm. The as-spun fibers were then dried at 100 °C for 2 h in a vacuum oven. The dried fibers were then calcinated at 600 °C in furnace for 2 h in presence of air to form BFO NWs. The product shows R3C Rhombohedral structure with XRD patterns matching JCPDS number 01-071-2494.

2. SEM characterization

Fig. S1 SEM image of the as-prepared BFO nanowires.

3. Peakforce-KPFM (PF-KPFM) working principle

Peakforce-KPFM technique combines the PeakForce TappingTM and frequency modulation KPFM (FM-KPFM), which offers simultaneous quantitative nanomechnical property and surface potential (*e.g.* contact potential difference V_{CPD}) mapping capability. During the KPFM lift scan, external DC and AC bias, V_{DC} and V_{AC} are applied simultaneously between the tip and sample, of which V_{AC} at frequency ω gives rise to an electric force modulation at both ω and 2ω . Accordingly, the electric force gradient $F_{el}^{'}$ can be expressed as:

$$F_{el} = \frac{\partial^2 C}{\partial z^2} \left((V_{DC} - V_{CPD})^2 + \frac{1}{2} V_{AC}^2 \right) + \frac{\partial^2 C}{\partial z^2} (V_{DC} - V_{CPD}) V_{AC} \sin(\omega t) + \frac{1\partial^2 C}{4\partial z^2} V_{AC}^2 \cos(2\omega t) \right)$$

where $\frac{\partial^2 C}{\partial z^2}$ is the second derivative of the capacitance, V_{CPD} is the KPFM surface potential signal, or the so-called contact potential difference. The V_{CPD} can be expressed as:

$$V_{CPD} = \frac{\varphi_{tip} - \varphi_{BFO}}{q},$$

where φ_{tip} and φ_{BFO} is the work function of AFM tip and BFO nanowire surface, *q* is the elementary charge, respectively. When $V_{DC} = V_{CPD}$, the modulation amplitude of the electric force gradient F_{el} at ω drops to 0, enabling one to extract work function information from V_{DC} . Herein, V_{CPD} instead of φ_{BFO} is used for interpretation, since tip work function calibration is very sensitive to the atmosphere, which would lose it validity when working in an ambient environment.

References

- 1. Prashanthi, K.; Thundat, T. Scanning 2013, 36, (2), 224-230.
- Prashanthi, K.; Dhandharia, P.; Miriyala, N.; Gaikwad, R.; Barlage, D.; Thundat, T. Nano Energy 2015, 13, 240–248.
- 3. Kovur, P.; Ravi, G.; Thomas, T. Nanotechnology 2013, 24, (50), 505710-505710.