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Details of diffusion Monte Carlo calculations

In the DMC simulations, the simple unbiased algorithm was applied, and the details of this implementa-

tion are given in Ref. 1. In brief, we use an ensemble of walkers to represent the nuclear configurations

of the molecule. At each step, a random walk is assigned to each atom in each walker, and then these

walkers are propagated via birth-death process. After each step, the reference energy, Ere f (τ), is cal-

culated as Ere f (τ) = V (τ)α[N(τ)N(0)]/N(0), where τ = it is the imaginary time; V (τ) is the average

potential over all the walkers that are alive, at imaginary time τ; N(τ) is the number of live walkers at

time τ; α is a parameter that can control the fluctuations of the number of walkers and the reference

energy. Finally, the average of the reference energy over the imaginary time gives an estimate of the

zero-point energy (ZPE), and the distribution of the walkers, when properly normalized, represents the

ground state wave function.

To compute the ZPE of the formic acid dimer, ten simulations were performed, and in each simula-

tion, 30000 walkers were initiated at the saddle point and were propagated for 40000 steps with step

size, ∆τ, of 5.0 au. The first 10000 steps were used for equilibration, and the remaining 30000 steps to

compute the ZPE.

Description of normal modes and the vectors

The vector, wavenumber, and description of each normal mode are given below. For normal modes of

the minimum, the symmetry of each mode is also given.
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Minimum normal modes

1 (Au): 70 cm−1 2 (Ag): 167 cm−1 3 (Au): 170 cm−1 4 (Ag): 209 cm−1

dimer twist in-plane rock out-of-plane wag dimer stretch

5 (Bg): 254 cm−1 6 (Bu): 275 cm−1 7 (Ag): 693 cm−1 8 (Bu): 716 cm−1

out-of-plane wag in-plane rock O–C=O bend O–C=O bend

9 (Bg): 956 cm−1 10 (Au): 970 cm−1 11 (Bg): 1084 cm−1 12 (Au): 1100 cm−1

O–H out-of-plane O–H out-of-plane C–H out-of-plane C–H out-of-plane

13 (Ag): 1255 cm−1 14 (Bu): 1258 cm−1 15 (Bu): 1406 cm−1 16 (Ag): 1408 cm−1

C–O stretch C–O stretch O–C–H bend O–C–H bend

17 (Bu): 1448 cm−1 18 (Ag): 1481 cm−1 19 (Ag): 1715 cm−1 20 (Bu): 1780 cm−1

O–C–H bend O–C–H bend C=O stretch C=O stretch

21 (Ag): 3095 cm−1 22 (Bu): 3097 cm−1 23 (Ag): 3232 cm−1 24 (Bu): 3326 cm−1

C–H stretch C–H stretch O–H stretch O–H stretch
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Saddle point normal modes

1: 1355i cm−1 2: 80 cm−1 3: 219 cm−1 4: 226 cm−1

proton transfer dimer twist in-plane rock out-of-plane wag

5: 317 cm−1 6: 514 cm−1 7: 592 cm−1 8: 774 cm−1

out-of-plane wag dimer stretch in-plane rock O–C=O bend

9: 814 cm−1 10: 1065 cm−1 11: 1079 cm−1 12: 1241 cm−1

O–C=O bend C–H out-of-plane C–H out-of-plane O–H stretch

13: 1341 cm−1 14: 1395 cm−1 15: 1397 cm−1 16: 1400 cm−1

O–H out-of-plane O–C–H bend O–C–H bend O–H out-of-plane

17: 1404 cm−1 18: 1408 cm−1 19: 1604 cm−1 20: 1691 cm−1

O–C–O symm. stretch O–C–O symm. stretch O–H–O bend O–H–O bend

21: 1743 cm−1 22: 1749 cm−1 23: 3101 cm−1 24: 3106 cm−1

O–C–O asym. stretch O–C–O asym. stretch C–H stretch C–H stretch
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Details of anharmonic vibrational calculations

To theoretically calculate the fundamental frequencies of FAD, we applied vibrational self-consistent-

field and virtual-state configuration interaction (VSCF+VCI) method,2 using our own code “Multi-

mode”.3,4 The calculation used the minimum geometry as reference, since the barrier separating the

two minima is quit high and the tunneling splitting cannot be resolved in most of the spectra. Full-

dimensional calculations for the fundamental frequencies are not feasible, either. Therefore, we per-

formed the calculation in reduced dimensionality, and the same strategy was also applied in the calcu-

lation for the IR spectrum of H7
+ and D7

+.5 In brief, we solved the reduced-dimensional m-mode (with

m < 3N − 6) Schrödinger equation Ĥ(Q)ψ(Q) = Eψ(Q) with zero total angular momentum, where

Q = [Q1 · · ·Qm] denotes the m modes coupled in the calculation. The kinetic energy operator for J = 0

is given by6

T̂ =
1
2 ∑

α,β

π̂α µαβ π̂β − 1
8 ∑

α

µαα − 1
2

m

∑
k=1

∂ 2

∂Q2
k
.

In this kinetic energy operator, µαα is the inverse of the effective moment of inertia tensor, and

π̂α =−i
m

∑
k,l=1

ζ
α
k,lQk

∂

∂Ql

are vibrational angular momentum terms and ζ α
k,l are Coriolis coupling constants. The potential V (Q)

in the Hamiltonian is the full potential of FAD with the remaining modes fixed at zero.

Since here we are particularly interested in the C–H and O–H stretches, which are in-plane modes,

all the out-of-plane modes were not considered in the anharmonic calculation, and they were fixed at

zero. Fifteen modes of the minimum were coupled in our calculation. These 15 modes are mode 4, 7,

8, and 13–24 (see the table above), and they belong to Ag and Bu symmetry of C2h point group.

In Multimode, the potential is written as a hierarchical n-mode representation (nMR):

V (Q1,Q2, · · · ,Qm) =∑
i

V (1)
i (Qi)+∑

i< j
V (2)

i j (Qi,Q j)+ ∑
i< j<k

V (3)
i jk (Qi,Q j,Qk)+

∑
i< j<k<l

V (4)
i jkl(Qi,Q j,Qk,Ql)+ · · · .

In our calculation, this representation is truncated at the 4MR.

In the VSCF calculation, the total vibrational wavefunction is given as a direct product of one

mode functions, and these one-mode functions are optimized using the self-consistent-field procedure.

For this specific calculation of FAD, harmonic basis functions were used to optimize the one-mode
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functions: 23 harmonic basis functions were used for mode 4; 17 basis functions for mode 7 and 8;

15 basis functions for mode 13–20; and 13 basis functions for mode 21–24. The solutions of the VSCF

equations give the VSCF ground state and virtual states.

The VSCF ground state and those virtual states are used as basis functions in the VCI procedure.

Here we use an "m-mode basis" to restrict the excitation space to a maximum of m modes excited

simultaneously, and in the calculation, we allowed up to 4-mode basis, i.e., 4 modes at most can be

excited simultaneously. To reduce the size of the Hamiltonian matrix, we also applied two constraints

at the same time: the maximum excitation for each mode (referred to as MAXBAS later) and the sum

of quanta of excitation (referred to as MAXSUM). In 1-mode basis, the MAXBAS is 14 for mode 4; 8

for mode 7 and 8; 6 for mode 13–20; and 4 for mode 21–24. In 2-mode basis, the MAXBAS’s are 13,

7, 5, and 3 for mode 4, mode 7–8, mode 13–20, and mode 21–24, respectively. In 3-mode basis, the

MAXBAS’s are 12, 6, 4, 2, and in the 4-mode basis, they are 11, 5, 3, 2. The MAXSUM is always 14 for

1-, 2-, 3-, and 4-mode basis. With all these restrictions, the size of the Hamilton matrix in two symmetry

blocks are 94247 and 88805, respectively. The matrix size was reduced to 23,270 and 23,034 based

on a perturbation test to eliminate the rows and columns of the matrices, which has been described in

detail in Ref. 7 and 8

Potential energy surface

The PES is available as a zip file in the supplementary material. The codes are written in Fortran 90

and the library and module files are pre-compiled with Intel Fortran compiler (ifort). Please contact

the authors (CQ: cqu3@emory.edu and JMB: jmbowma@emory.edu) if you have any questions about

the PES and the codes.
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