Investigation on the neutral and anioninc $B_xAl_yH_2$ (x + y = 7, 8, 9) clusters using density functional theory combined with photoelectron spectroscopy

Li-Ping Ding,^{1,*} Peng Shao,¹ Cheng Lu,^{2,3,*} Fang-Hui Zhang,¹ Lei Ding,¹ and Tao Li Yuan¹

¹Department of Optoelectronic Science & Technology, College of Elecrical & Information

Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China

² Department of Physics, Nanyang Normal University, Nanyang, 473061, China.

³Beijing Computational Science Research Center, Beijing, 100084, China.

		-	-		
Isomers	VDE	Isomers	VDE	Isomers	VDE
$BAl_6H_2^-$	3.10	$BAl_7H_2^-$	2.94	$BAl_8H_2^-$	2.95
$B_2Al_5H_2^-$	3.10	$B_2Al_6H_2^-$	2.36	$B_2Al_7H_2^-$	2.86
$B_3Al_4H_2^-$	2.94	$B_3Al_5H_2^-$	2.05	$B_3Al_6H_2^-$	2.84
$B_4Al_3H_2^-$	2.47	$B_4Al_4H_2^-$	2.97	$B_4Al_5H_2^-$	2.95
$B_5Al_2H_2^-$	2.52	$B_5Al_3H_2^-$	2.39	$B_5Al_4H_2^-$	2.83
$B_6AlH_2^-$	3.69	$B_6Al_2H_2^-$	2.59		
		$B_7AlH_2^-$	2.40		

Table S1 The calculated VDEs for next low-lying state of anionic $B_xAl_yH_2$ (x + y = 7, 8, 9) at B3LYP/6-311+G* level of theory. All energies are in eV.

^{*}Correspondence to: Li-Ping Ding, Shaanxi University of Science & Technology, Xi'an 710021, China. *E-mail address:* scu_ding@163.com (L. P. Ding). scu_lucheng@163.com (Cheng Lu)

x + y = 7	$\mathrm{Al}_{7}\mathrm{H}_{2}$	BAl_6H_2	$B_2Al_5H_2$	$B_3Al_4H_2$	$B_4Al_3H_2$	$B_5Al_2H_2$	B_6AlH_2	B_7H_2
B_1		-1.682	-0.853	-0.255	-0.207	-0.553	-0.086	0.050
B_2			-1.400	-1.057	-0.826	0.193	-0.346	0.133
B ₃				-0.696	-0.132	-0.167	-0.065	-0.049
B_4					-0.645	0.232	-0.133	-0.230
B_5						-0.312	-0.346	-0.056
B_6							-0.086	0.128
B_7								0.065
Al_1	0.085	0.439	0.567	0.518	0.393	0.758	1.020	
Al_2	0.246	0.641	0.018	0.399	0.655	0.827		
Al ₃	-0.011	0.306	0.455	0.480	0.692			
Al_4	0.044	0.393	0.506	0.543				
Al_5	-0.011	0.030	0.983					
Al_6	0.152	0.149						
Al_7	0.138							
H_1	-0.333	0.051	0.046	0.004	0.064	0.061	0.021	-0.020
H_2	-0.310	-0.326	-0.323	0.064	0.006	-0.041	0.021	-0.022

Table S2 Natural charge populations (NPA) for the Al, B and H atoms of the most stable neutral $B_x Al_y H_2$ (x + y = 7) clusters.

Table S3 Natural charge populations (NPA) for the Al, B and H atoms of the most

x + y = 7	$\mathrm{Al}_{7}\mathrm{H}_{2}^{-}$	$BAl_6H_2^-$	$B_2Al_5H_2^-$	$B_3Al_4H_2^-$	$B_4Al_3H_2^{-}$	$B_5Al_2H_2^-$	$B_6AlH_2^-$	$\mathrm{B_7H_2}^-$
B_1		-1.303	-0.904	-0.548	-0.612	-0.290	-0.159	0.008
B_2			-1.307	-1.106	-0.421	-0.479	-0.410	-0.207
B_3				-0.548	-0.905	-0.429	-0.163	0.008
B_4					-0.362	-0.467	-0.271	-0.370
B_5						-0.379	-0.410	-0.207
B_6							-0.159	0.088
\mathbf{B}_7								-0.260
Al_1	-0.077	0.161	0.461	0.305	0.524	0.598	0.594	
Al_2	0.206	0.146	0.395	0.326	0.363	0.476		
Al ₃	-0.244	-0.142	-0.030	0.252	0.411			
Al_4	-0.165	0.153	0.423	0.326				
Al_5	-0.165	0.462	0.311					
Al_6	0.206	-0.074						
Al_7	-0.305							
H_1	-0.363	-0.047	0.015	-0.004	-0.034	-0.038	-0.011	-0.030
H ₂	-0.363	-0.355	-0.365	-0.004	0.036	0.006	-0.011	-0.030

stable anionic $B_x Al_y H_2 (x + y = 7)$ clusters.

x + y = 8	Al ₈ H ₂	BAl ₇ H ₂	B ₂ Al ₆ H ₂	B ₃ Al ₅ H ₂	$B_4Al_4H_2$	$B_5Al_3H_2$	$B_6Al_2H_2$	B ₇ AlH ₂	B_8H_2
B ₁		-1.21	-1.089	-0.729	-1.244	-0.476	-0.234	-0.190	-0.104
B_2			-1.808	-1.721	-0.391	-0.476	-0.369	-0.190	0.148
B_3				-0.508	-0.476	-0.411	-0.274	0.053	-0.104
B_4					-0.341	-0.411	-0.370	-0.386	0.092
B_5						-0.752	-0.277	0.032	0.092
B_6							-0.115	0.032	0.069
\mathbf{B}_7								-0.183	0.069
B_8									-0.261
Al_1	-0.154	0.454	0.736	0.748	0.955	0.930	0.704	0.743	
Al_2	0.361	0.083	0.743	0.748	0.703	0.807	0.882		
Al ₃	-0.153	0.231	0.478	0.776	0.530	0.790			
Al_4	0.388	0.071	0.763	0.647	0.567				
Al_5	-0.148	0.082	0.614	0.401					
Al_6	0.388	0.275	0.199						
Al_7	-0.115	0.358							
Al_8	0.088								
H_1	-0.328	-0.181	-0.309	-0.337	0.004	-0.00002	-0.001	0.045	-0.031
H_2	-0.328	-0.162	-0.327	-0.025	-0.309	-0.00002	0.055	0.045	0.029

Table S4 Natural charge populations (NPA) for the Al, B and H atoms of the most stable neutral $B_xAl_yH_2$ (x + y = 8) clusters.

x + y = 8	$Al_8H_2^-$	$BAl_7H_2^-$	$B_2Al_6H_2^-$	B ₃ Al ₅ H ₂	$B_4Al_4H_2^-$	$B_5Al_3H_2^-$	$B_6Al_2H_2^-$	$B_7AlH_2^-$	$B_8H_2^-$
B_1		-2.513	-1.190	-0.758	-0.365	-0.427	-0.290	-0.416	-0.071
B_2			-1.758	-1.857	-0.365	-0.243	-0.201	-0.069	-0.199
B_3				-0.430	-1.276	-0.626	-0.326	-0.069	-0.210
B_4					-0.972	-0.626	-0.558	-0.100	-0.048
B_5						-0.791	-0.219	-0.462	0.024
B_6							-0.656	-0.280	-0.135
B_7								-0.280	-0.137
B_8									-0.203
Al_1	-0.308	0.456	0.635	0.583	0.515	0.569	0.749	0.705	
Al_2	0.061	0.034	0.659	0.548	0.465	0.550	0.490		
Al ₃	-0.261	0.265	0.345	0.608	0.515				
Al_4	0.347	0.135	0.546	0.452	0.441				
Al ₅	-0.233	0.178	0.468	0.257					
Al_6	0.118	0.545	-0.006						
Al_7	-0.314	0.597							
Al_8	0.310								
H_1	-0.363	-0.362	-0.344	-0.358	0.020	0.031	0.018	-0.015	-0.008
H_2	-0.356	-0.334	-0.356	-0.046	0.020	0.011	-0.007	-0.015	-0.012

Table S5 Natural charge populations (NPA) for the Al, B and H atoms of the most stable anionic $B_xAl_yH_2$ (x + y = 8) clusters.

x + y = 9	Al_9H_2	BAl_8H_2	$B_2Al_7H_2$	$B_{3}Al_{6}H_{2} \\$	$B_4Al_5H_2$	$B_5Al_4H_2$
B_1		-1.559	-2.137	-0.346	-0.283	-0.668
B_2			-1.984	-0.897	-0.654	-0.347
B_3				-0.892	-0.785	-0.668
B_4					-1.887	-0.347
B_5						-0.937
Al_1	-0.314	0.077	0.531	0.386	0.488	0.7561
Al_2	0.135	0.201	0.850	0.494	0.766	0.568
Al_3	0.193	0.077	0.851	0.350	0.766	0.869
Al_4	0.263	0.159	0.530	0.523	0.708	0.767
Al_5	-0.115	0.158	0.767	0.010	0.833	
Al_6	0.171	0.456	0.641	0.280		
Al_7	0.231	0.068	0.641			
Al_8	-0.129	0.643				
Al ₉	0.160					
H_1	-0.304	-0.304	-0.344	0.045	0.030	0.004
H ₂	-0.291	0.025	-0.344	0.047	0.018	0.004

Table S6 Natural charge populations (NPA) for the Al, B and H atoms of the most stable neutral $B_xAl_yH_2$ (x + y = 9) clusters.

e anionic $B_x Al_y H_2 (x + y = 9)$ clusters.									
	x + y = 9	Al ₉ H ₂	$BAl_8H_2^-$	$B_2Al_7H_2^-$	B ₃ Al ₆ H ₂	$B_4Al_5H_2^-$	B ₅ Al ₄ H ₂ ⁻		
	B1		-2.644	-1.212	-0.832	-0.355	-1.035		
	B_2			-2.076	-0.832	-0.717	-0.236		
	B_3				-1.010	-0.741	-0.234		
	B_4					-1.985	-0.410		
	B_5						-1.454		
	Al_1	-0.408	0.309	-0.025	0.295	0.271	0.708		
	Al_2	0.103	0.188	0.565	0.017	0.679	0.531		

0.422

0.420

0.661

0.382

0.208

0.008

-0.353

0.005

0.583

0.295

0.465

0.007

0.007

0.680

0.480

0.693

0.014

-0.0120

0.537

0.588

0.004

0.001

 Al_3

 Al_4

 Al_5

Al₆ Al₇

 $Al_8 \\$

Al₉

 H_{1}

 H_2

0.013

0.076

-0.165

-0.027

0.226

-0.139

-0.017

-0.344

-0.319

0.304

0.447

0.557

-0.047

0.0830

0.448

-0.340

-0.305

Table S7 Natural charge populations (NPA) for the Al, B and H atoms of the most stable anionic $B_xAl_yH_2$ (x + y = 9) clusters.

Fig. S1 Equilibrium geometries of the low-lying isomers for neutral and anionic $B_xAl_yH_2$ (x + y = 7) clusters at B3LYP/6-311+G* level of theory. The pink spheres stand for aluminum atoms and the cyan ones for boron atoms.

Fig. S2 Equilibrium geometries of the low-lying isomers for neutral and anionic $B_xAl_yH_2$ (x + y = 8) clusters at B3LYP/6-311+G* level of theory. The pink spheres stand for aluminum atoms and the cyan ones for boron atoms.

Fig. S3 Equilibrium geometries of the low-lying isomers for neutral and anionic $B_xAl_yH_2$ (x + y = 9) clusters at B3LYP/6-311+G* level of theory. The pink spheres stand for aluminum atoms and the cyan ones for boron atoms.

for any the man

5Nc C₁ ²A 0.23 5Nd C_s ²A 0.38 5Ac C_s ¹A 0.44 5Ad C₁ ¹A 0.48

Fig. S4 Simulated spectra for the next low-lying isomers of anionic $B_xAl_yH_2$ (x + y = 7) clusters at B3LYP/6-311+G* level of theory.

Fig. S5 Simulated spectra for the next low-lying isomers of anionic $B_xAl_yH_2$ (x + y = 8) clusters at B3LYP/6-311+G* level of theory.

Fig. S6 Simulated spectra for the next low-lying isomers of anionic $B_xAl_yH_2$ (x + y = 9) clusters at B3LYP/6-311+G* level of theory.

Fig. S7 The four next highest occupied molecular orbitals of ground state anionic $B_xAl_yH_2$ (x + y = 7) clusters at B3LYP/6-311+G* level of theory.

Fig. S8 The four next highest occupied molecular orbitals of ground state anionic $B_xAl_yH_2$ (x + y = 8) clusters at B3LYP/6-311+G* level of theory.

Fig. S9 The four next highest occupied molecular orbitals of ground state anionic $B_xAl_yH_2$ (x + y = 9) clusters at B3LYP/6-311+G* level of theory.

