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Population-level Cell State Transition Model

From the MFPT we acquired (Fig. 5 in the main text), we estimated the transition rate (inverse of the
MFPT) between different attractors (cell types). We further constructed a Markov cell state transition
model, to calculate the population evolutions for cells. With n1, n2, n3 denoting the number of cells for
three different cell types, we wrote down the state transition model as three ODEs:

dn1
dt

= v1 − (k12 + k13) ∗ n1 + k21 ∗ n2 + k31 ∗ n3
dn2
dt

= v2 − (k21 + k23) ∗ n2 + k12 ∗ n1 + k32 ∗ n3
dn3
dt

= v3 − (k31 + k32) ∗ n3 + k13 ∗ n1 + k23 ∗ n2
(1)

which determine the temporal evolution of the cell population starting from an initial condition. Here,
kij represents the transition rate from state i to state j (the proportion of cells that switch from state i
to state j per unit time), which is calculated from: kij = 1/MFPTij . vi indicates the proliferation rate
of cells for cell state i. For the case of no population selection pressure, vi = 0 for all i. The proliferation
rate vi can be change to be larger than 0 to consider cells having a selective advantage. In this work, we
only explored the case for no population selection pressure (vi = 0 for all i). By solving the above ODEs,
we obtained the steady state proportions of cells for three cell types, at different SNAIL level (Fig. 5D).
The population-level cell state transition model confers a way to explore the temporal evolution as well
as the steady state distribution of cell populations, and to make comparisons with experiments directly.
It can be harnessed to investigate the effects of different treatments on the cell fate determination, e.g.
to simulate the growth or extinction of cancer cell populations under different interventions (making
perturbations to certain genes or microRNA).

The landscape and the population model predict that as the SNAIL signal is strengthened, the steady
state proportion for E state cells and P state cells decreases and the steady proportion for M state
cells increases. This prediction is consistent with the landscape results (Fig. 3), and can be tested
experimentally.

Hamilton-Jacobian Approach for Path Integral

From the path integral formalism, we can evaluate the weights of the kinetic paths. The most probable
trajectory can be obtained when the transition action S(x) is minimized directly. The Lagrangian can
be written as [1–4]:

L(x) =
1

4D
ẋ2 + V (x)− 1

2D
F(x) · ẋ (2)
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and the generalized momentum can be written out as: P(x) = ∂L
∂̇x = 1

2D (ẋ − F(x)). In the dynamic
systems, the Hamiltonian of the system has the form:

H(x) = −L(x) + P(x) · ẋ = Eeff (3)

From the above equation, we have 1
4D ẋ2 − V (x) = Eeff and |ẋ| =

√
4D(Eeff + V (x)). After

substituting Eq. S3 into the action, we obtain S(x) =
∫

(P(x) · ẋ − H(x))dt. We can find that the
action characterizing the weights of the paths depends on the values of the Hamiltonian. Specific values
of the Hamiltonian are corresponding to specific values of the final time T . For a fixed Hamiltonian, a
corresponding optimal path exits when the action S(x) is minimized.

According to the least action principle, if the Hamiltonian of the system is constant, the variation of
the action, for given initial and final coordinates and initial and final time, is zero. Giving a variation
of the final time T and leaving the initial and the final coordinates fixed, we have δS = −Hδt. For
a constant Hamiltonian, δS = −Eδt. We define S0 =

∫
P(x) · ẋdt, since S(x) =

∫
(P(x) · ẋ − H(x)).

We find δS0 = 0. Thus, the action S0 is minimized in terms of all the paths that satisfy the constant
Hamiltonian and passing through the final point at any instant.

When it goes to the multidimensional questions, the action depends not only the initial and final
coordinates but also on the initial and final time. In the HJ framework, we can transform the formulations
into a different representation in x space: S0 = SHJ(x) =

∫ ∑
i

1
2D (ẋi − Fi)dxi =

∫ ∑
i pi(x)dxi. Here

pi is the associated momentum. Now the action only depends on the initial and final coordinates. This
action can be further simplified and is equivalent to a line integral along a particular one dimensional
path l so that SHJ(x) =

∫ ∑
i pi(x)dxi =

∫
pldl where pl =

√
(Eeff + V (x))/D − 1

2DFl. Therefore,
the formulism is switched from the time-dependent to the Hamiltonian-dependent (HJ) description [1–4].
The dominant path connection given initial and final states is obtained by minimizing the action in the
HJ representation SHJ =

∫ xf

xi
(
√

(Eeff + V (x))/D − 1
2DFl)dl, where dl is an infinitesimal displacement

along the path trajectory. Eeff is a free parameter that determines the total time elapsed during the
transition.

In this work, for simplification we chose Eeff = −Vmin(x), which is the effective potential by mini-
mizing V (x), and corresponding to the longest kinetic time. Eventually, the optimal paths were obtained
by minimizing the discrete target function:

SHJ =

N−1∑
n

(
√

(Eeff + V (n))/D − 1

2D
Fl(n))∆ln,n+1 + λP (4)

where

P =

N−1∑
i

(∆li,i+1− < ∆l >)2

(∆l)2n,n+1 =
∑
i

(xi(n+ 1)− xi(n))2

Fl(n) =
∑
i

Fi(x(n))(xi(n+ 1)− xi(n))/∆ln,n+1

V (n) =
∑
i

(
1

4D
F2(xi) +

1

2

∑
j

∂Fj(xi)

∂xj
) (5)

Here, ∆ln,n+1 is the Euclidean measure of the nth elementary path step, and P is a penalty function
keeping all the length elements close to their average, which becomes irrelevant in the continuum limit.
The minimization of the discrete HJ effective action was performed by applying a simulated annealing
algorithm or the conjugate gradient algorithm. In this work, we chose the discrete steps n as 20.



3

Relationship between Diffusion Equation and Master Equation

The Diffusion equation (Fokker-Planck Equation) is the probability evolution equation for continuous
variables, whereas the Master equation describes the probability evolution for discrete variables.

A Master equation describing the probability evolution can be represented in discrete state space:
∂P (x,t|x0,t0)

∂t =
∑M

j=1[aj(x− νj)P (x− νj, t|x0, t0) − aj(x)P (x, t|x0, t0)]. Here P is the probability at
molecular number vector x and time t, given initial time t0 and molecular number x0. M is the number
of reactions, aj is the reaction rates and ν is the state vector for molecular number changes caused by
one reaction. When the molecular number is sufficiently large, the maser equation is equivalent to the
Langevin equation or diffusion equation (Fokker-Planck Equation) in continuous representation. Here the
variables are continuous concentrations, rather than discrete molecular number. The Langevin equation
describing the motion of the system can be written as:dxdt = F(x)+G ·Γ, where G is a tensor representing

the spatial (concentration) dependent part of the noise Gij(x) = vji
√
aj(x) (i=1,2,...N,j=1,2,...,M.) [5]

and Γ is a vector representing gaussian white noise corresponding to the time dependent part of the noise,
which is defined as < Γj(t) >= 0 and < Γi(t)Γj(t

′) >= 2δijδ(t − t′)(δij = 1 for i = j, and δij = 0 for
i 6= j ).

The Fokker-Planck or diffusion equation characterizes the continuous description of the intrinsic sta-
tistical fluctuations [5]:

∂P (x,t)
∂t = −

N∑
i=1

∂
∂xi

Fi(x)P (x, t) + 1
2

N∑
i=1,i′=1

∂2

∂xi∂xi′
Dii′(x)P (x, t)

Here x stands for the set {xi}(i = 1, 2, 3, ..., N), N is the number of species, and M is the number

of reactions. F , D and G are separately defined as: Fi(x) =
M∑
j=1

vjiaj(x)(i = 1, 2, ..., N), Dii′(x) =

M∑
j=1

vjivji′aj(x)(i, i′ = 1, 2, ..., N), and Gij(x) = vji
√
aj(x) (i=1,2,...N,j=1,2,...,M.) [5]

Therefore, a Master equation for the discrete description of dynamical system can be transformed to
a corresponding probability diffusion equation for the continuous description when the molecular number
is sufficiently large.
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