Supporting Information

Adsorption in Zeolites Using Mechanically Embedded ONIOM Clusters

Ryan E. Patet^{1,2}, Stavros Caratzoulas^{1,2}, Dionisios G. Vlachos^{1,2}

¹Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716

²Catalysis Center for Energy Innovation (CCEI), www.efrc.udel.edu

S1. Quasi-Rotor Harmonic Oscillator Approximation (qRRHO)

It is well known that treating the translational or rotational degrees of freedom of a guest molecule in a host molecule (e.g., zeolite) as low-frequency harmonic oscillations results in inaccurate thermal corrections. In the limit of zero frequency, the vibrational energy of the harmonic oscillator approaches kT instead of kT/2, which is the correct contribution of a translational or rotational degree of freedom. In the same limit, the entropy of a harmonic oscillator diverges to infinity.

Following Head-Gordon,¹ we use Equations (1)-(3) to compute the vibrational thermal energy and replace frequencies below a cut-off frequency of 100 cm⁻¹ with kT/2 by means of a switching function $\omega(v_i)$:

$$U_{qRRHO} = \sum_{i} \left[\omega(\nu_i) U_{RRHO} + (1 - \omega(\nu_i)) \frac{1}{2} kT \right]$$

$$(1)$$

$$U_{RRHO} = \frac{1}{2} N_A h v_i + kT \left(\frac{h v_i}{kT}\right) \frac{e^{-h v_i / kT}}{\left(1 - e^{-h v_i / kT}\right)}$$
(2)

$$\omega(\nu_i) = \frac{1}{1 + (\nu_0/\nu_i)^4}$$
(3)

where v_i is the vibrational frequency, v_0 is the cut-off frequency (chosen to be 100 cm⁻¹), N_A is Avogadro's number, *h* is Planck's constant, *k* is Boltzmann's constant, and *T* is temperature.

In the qRRHO approximation to the entropy proposed by Grimme,² the low-frequency contributions to the vibrational entropy of the harmonic oscillator are replaced by a corresponding rotational entropy:

$$S_{qRRHO} = \sum_{i} \left[\omega(v_i) S_{HO} + (1 - \omega(v_i)) S_{RR} \right]$$

$$S_{RR} = k \left[\frac{1}{2} + \ln \left\{ \left(\frac{8\pi^3 \mu' kT}{h^2} \right)^{1/2} \right\} \right]$$
(4)
(5)

$$\mu' = \frac{\left(h/8\pi^2 \nu_i\right) B_{a\nu}}{\left(h/8\pi^2 \nu_i\right) + B_{a\nu}}$$

$$S_{a\nu} = B \left[\frac{h\nu_i}{(1 - e^{-h\nu_i/kT})}\right]$$
(6)

$$S_{HO} = R \left[\frac{l}{k \left(e^{h v_i / kT} - 1 \right)} - \ln \left(1 - e^{-h v_i / kT} \right) \right]$$
(7)

where B_{av} is an average molecular moment of inertia chosen to be 10⁻⁴⁴ kg m².

S2. Calculated Entropies of Adsorption

In Table S1, we present the calculated entropies of adsorption within the qRRHO approximation for adsorption of *n*-C1 to *n*-C8 alkanes in H-MFI and compare with experimental values reported by De Moor et al.³ For the guest molecule, we have assumed 2-dimensional free translations on a molecular surface area of 200 pm \times 600 pm.³

Temp. (°C)	Exp. ³	25	50	75	100	125	150	200
Methane	—	-59.3	-58.1	-57.0	-56.0	-55.1	-54.2	-53.3
Ethane	—	-76.7	-76.0	-75.3	-74.7	-74.1	-73.5	-72.9
Propane	-94	-101.9	-101.4	-101.0	-100.5	-100.1	-99.7	-99.3
n-Butane	-104	-112.5	-112.0	-111.6	-111.2	-110.9	-110.5	-110.1
n-Pentane	-118	-120.5	-120.1	-119.8	-119.5	-119.2	-118.9	-118.6
n-Hexane	-121	-126.2	-125.9	-125.7	-125.4	-125.2	-125.0	-124.7
n-Heptane	—	-148.8	-148.8	-148.8	-148.8	-148.8	-148.7	-148.7
n-Octane	—	-159.4	-159.7	-160.0	-160.2	-160.4	-160.6	-160.8

Table S1. Adsorption entropies within the qRRHO approximation.

REFERENCES

- 1. Y.-P. Li, J. Gomes, S. M. Sharada, A. T. Bell and M. Head-Gordon, *J. Phys. Chem. C*, 2015, **119**, 1840-1850.
- 2. S. Grimme, Chem. Eur. J., 2012, 18, 9955-9964.
- 3. B. A. D. Moor, M.-F. Reyniers, O. C. Gobin, J. A. Lercher and G. B. Marin, *J. Phys. Chem. C*, 2011, **115**, 1204-1219.