Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

## **Supplementary Materials**

## The effect of the zeolite pore size on the Lewis acid strength of extra-

## framework cations

HoViet Thang,<sup>a</sup> Karel Frolich,<sup>b</sup> Mariya Shamzhy,<sup>c</sup> Pavla Eliášová,<sup>c</sup> Miroslav Rubeš,<sup>a</sup> Jiří Čejka,<sup>c</sup>

Roman Bulánek,<sup>b</sup> Petr Nachtigall<sup>a\*</sup>

<sup>*a*</sup> Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.

<sup>b</sup>Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic

<sup>c</sup>J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic v.v.i.,

Dolejškova 3, 182 23 Prague 8, Czech Republic

## List of Figure and Table

**Fig. SI-1** Argon adsorption isotherms measured at -186°C displayed in linear (A) and semilogarithmic scale (B) and pore-size distribution calculated from the adsorption data by SAEIUS software (C)

**Table SI-1.** The numbering of T sites in IPC-1P, **UTL**, **OKO** and **PCR** was taken from IZA database. The common numbering of the T' sites are chosen following numbering of UTL structure.

**Table SI-2.** The most stable  $Li^+$  sites found for all possible Al positions inside the 2D dense layer in Li-IPC-1P, Li-UTL, Li-OKO, and Li-PCR; Li distances to framework oxygen atoms (O<sub>f</sub>) smaller than 2.4 Å also reported

Table SI-3. DFT/CC correction energies without Li<sup>+</sup> interactions



**Fig. SI-1** Argon adsorption isotherms measured at -186°C displayed in linear (A) and semilogarithmic scale (B) and pore-size distribution calculated from the adsorption data by SAEIUS software (C).

| Common denotation | IPC-1P | UTL | IPC-2<br>( <b>OKO</b> ) | IPC-4<br>( <b>PCR</b> ) |
|-------------------|--------|-----|-------------------------|-------------------------|
| T1'               |        | T1  |                         |                         |
| T2'               |        | T2  | T6                      |                         |
| T3'               | T3     | Т3  | T1                      | T1                      |
| T4'               | T4     | T4  | T2                      | T3                      |
| T5'               | T5     | T5  | Т3                      | T4                      |
| T6'               | T6     | T6  | T4                      | T5                      |
| Τ7'               | T7     | T7  | T5                      | T2                      |
| T8'               | Т8     | Т8  | Τ7                      | T6                      |
| Т9'               | Т9     | Т9  | T8                      | T7                      |
| T10'              | T10    | T10 | T9 T8                   |                         |
| T11'              | T11    | T11 | T10 T9                  |                         |
| T12'              | T12    | T12 | T11 T10                 |                         |

**Table SI-1.** The numbering of T sites in IPC-1P, **UTL**, **OKO** and **PCR** was taken from IZA database. The common numbering of the T' sites are chosen following numbering of UTL structure.

**Table SI-2.** The most stable  $Li^+$  sites found for all possible Al positions inside the 2D dense layer in Li-IPC-1P, Li-UTL, Li-OKO, and Li-PCR; Li distances to framework oxygen atoms (O<sub>f</sub>) smaller than 2.4 Å also reported.<sup>a</sup>

| Al location          | Al   | $r(Li^+O_f)$                                 |                                              |                                              |                                              |  |
|----------------------|------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
|                      | site | IPC-1P                                       | UTL                                          | ОКО                                          | PCR                                          |  |
|                      | T3'  | P8bb<br>1.98, 2.02, 2.19                     | M8b<br>1.86, 1.97, 2.16                      | M8b<br>1.87, 2.02, 2.05                      | M8b<br>1.88, 2.10, 2.19                      |  |
| layer sites          | T4'  | P8bb<br>1.87, 1.88                           | I2 <sup>b</sup><br>1.86 ,1.88                | <i>I</i> 2<br>1.86 1.87                      | 12<br>1.87, 1.89                             |  |
|                      | T5'  | M8b                                          | <i>M8b</i>                                   | M8b                                          | M8b                                          |  |
|                      | T8'  | 1.95, 1.96, 2.08<br>P8bb                     | 1.94, 1.95, 2.08<br>M8b                      | 1.91, 1.94, 2.13<br>M8b                      | 1.92, 1.93, 2.03<br>M8b                      |  |
|                      | Т9'  | 1.92, 1.95, 2.18<br>M8b<br>1.94, 2.01, 2.02, | 1.91, 1.93, 2.02<br>M8b<br>1.94, 1.99, 2.07. | 1.93, 1.94, 2.03<br>M8b<br>2.00, 2.05, 2.12, | 1.94, 1.94, 2.10<br>M6b<br>1.98, 2.00, 2.12, |  |
|                      | T11' | 2.23<br>M6b<br>1.93, 1.93, 2.07              | 2.18<br>M6b<br>1.97, 2.00, 2.21              | 2.13<br>M6b<br>1.95, 2.01, 2.32              | 2.20<br>M6b<br>1.97, 1.97, 2.31              |  |
| inter-layer<br>sites | T6'  | P5<br>1.90, 1.90, 2.04                       | 12<br>1.86, 1.87                             | M8b<br>1.89, 2.01, 2.04                      | P6<br>1.94, 2.06, 2.16,<br>2.24              |  |
|                      | Τ7'  | M5'<br>1.88, 1.91, 1.99                      | 12<br>1.85, 1.88                             | 12<br>1.87, 1.91                             | P6'<br>1.92, 2.10, 2.17,<br>2.20             |  |
|                      | T10' | S8b<br>1.93, 2.07, 2.11,<br>2.11             | P5'p<br>1.90, 1.94, 1.95                     | P5'<br>1.83, 2.01, 2.04                      | P6'<br>1.97, 1.97, 2.24,<br>2.24             |  |
|                      | T12' | P5<br>1.92, 1.99, 2.07                       | M8b<br>1.89, 1.98, 2.10                      | M8b<br>1.89, 2.03, 2.09                      | P6<br>1.96, 1.96, 2.16,<br>2.16              |  |

<sup>a</sup> Distances are in Å

<sup>b</sup> This site was denoted P8bb in Ref. <sup>1</sup>

| Al                                                | Al aita | ΔEcor  |       |       |       |  |  |
|---------------------------------------------------|---------|--------|-------|-------|-------|--|--|
| location                                          | AI site | IPC-1P | UTL   | ОКО   | PCR   |  |  |
| layer sites                                       | T3'     | -11.4  | -10.7 | -9.9  | -16.7 |  |  |
|                                                   | T4'     | -8.0   | -10.0 | -10.3 | -15.4 |  |  |
|                                                   | T5'     | -11.7  | -11.3 | -12.2 | -16.8 |  |  |
|                                                   | T8'     | -12.9  | -12.3 | -11.8 | -16.7 |  |  |
|                                                   | Т9'     | -13.6  | -13.5 | -14.6 | -15.1 |  |  |
|                                                   | T11'    | -9.6   | -8.4  | -8.6  | -15.1 |  |  |
| inter-layer<br>sites                              | T6'     | -9.2   | -8.5  | -9.8  | -15.7 |  |  |
|                                                   | T7'     | -5.8   | -7.7  | -10.9 | -15.6 |  |  |
|                                                   | T10'    | -7.2   | -12.8 | -11.0 | -15.7 |  |  |
|                                                   | T12'    | -9.1   | -13.1 | -12.3 | -15.7 |  |  |
| <sup>a</sup> Energies are in kJ mol <sup>-1</sup> |         |        |       |       |       |  |  |

Table SI-3. DFT/CC correction energies without  $Li^+$  interation <sup>a</sup>

1. Thang, H. V.; Rubes, M.; Bludsky, O.; Nachtigall, P., Computational Investigation of the Lewis Acidity in Three-Dimensional and Corresponding Two-Dimensional Zeolites: Utl Vs Ipc-1p. *J Phys Chem A* **2014**, *118*, 7526-7534.