Supporting Information

Iron-embedded C₂N monolayer: a promising low-cost and high-activity singleatom catalyst for CO oxidation

B. L. He, ^{a*} J. S. Shen^a and Z. X. Tian^b

^aCollege of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China
^bCollege of Physics and Information Engineering, Hebei Normal University, Shijiazhuang, Hebei 050024, China

^{*} Corresponding author: E-mail: hbl626@126.com

Table S1. The adsorption energies (E_{ad} , in eV) and some selected structural parameters for CO₂ adsorbed on the Fe/C₂N monolayer with different convergence criteria in Hellmann–Feynman force (eVÅ⁻¹). The units of the bond distance and bond angle are angstrom and degree, respectively.

	0.02	0.01	0.005	0.002
E_{ad}	0.230	0.228	0.227	0.227
$d_{(\text{C-Fe})}$	1.995	1.995	1.994	1.994
$d_{(\text{O-C})}$	1.252, 1.202	1.252, 1.202	1.252, 1.202	1.252, 1.202
∠(0-C-0)	149.005	148.929	148.977	148.995

Fig. S1. The atomic structures of the most stable configuration of the C_2N monolayer with the adsorbed Fe dimer and some configurations with two separate Fe atoms. The energies for these structures have been calculated with respect to the configuration shown in (a).

Fig. S2. The atomic structures of the most stable configuration of the C_2N monolayer with the adsorbed Fe trimer and some configurations with three separate Fe atoms. The energies for these structures have been calculated with respect to the configuration shown in (a).