Electronic Supplementary Information

Enhanced electrocatalytic activity of nitrogen-doped olympicene/graphene

hybrids for oxygen reduction reaction

Xiuli Hou^a, Peng Zhang^{a,*}, Shuang Li^b, and Wei Liu^{b,*}

^a Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;

^b Nano Structural Materials Center, School of Materials Science and Engineering,

Nanjing University of Science and Technology, Nanjing 210094, China.

*E-mail: zhangpjlxb@ujs.edu.cn, weiliu@njust.edu.cn

Computational methods

Spin-polarized DFT calculations were performed using the DMol³code.^{1,2} The well-known Perdew-Burke-Ernzerhof (PBE) functional with generalized gradient approximation (GGA) is used as the exchange-correlation functional.³ The core electrons are described by the all electron relativistic (AER) core treat method.⁴ The double numerical plus polarization (DNP) is chosen as the atomic orbital basis set.¹ A smearing of 0.005 Ha is applied to the orbital occupation. The real-space global orbital cutoff radius is set to 3.7 Å in our calculations. The convergence tolerances of energy, maximum force and displacement are 1.0×10^{-5} Ha, 0.002 Ha/Å, and 0.005 Å, respectively. The DFT-D2 method of Grimme is employed to include the van der Waals (vdW) interaction in our computationss.⁵ A conductor-like screening model (COSMO) is used here to describe the water solvent environment, and the dielectric constant is set as 78.54.⁶ To quantify the robustness of our computational settings, we

carried out sysmematically tests for basis set and functionals. We also calculated the ORR process on N_A -olympicene based on triple numerical plus polarization (TNP), double numerical plus *d*-functions (DND), and hybrid functional B3LYP. As shown in Figure S7, the overpotential of ORR on N_A -olympicene are determined to be 0.79, 0.84, and 0.75 V from GGA/PBE/TNP, GGA/PBE/DND, and B3LYP/DNP, which are close to that obtained from GGA/PBE/DNP (0.70 V).

The E_{ad} of ORR intermediates on N-olympicenes was determined as $E_{ad} = E_{mol} + E_{N-Oly} - E_{mol-N-Oly}$, where E_{mol} , E_{N-Oly} and $E_{mol-N-Oly}$ are the electronic energies of an isolated adsorbed molecule, N-olympicenes, and the adsorption systems, respectively.^{7,8} By this definition, the positive E_{ad} values correspond to the exothermic stably adsorption processes.

The free energy diagram was calculated based on the computational hydrogen electrode (CHE) model developed by Nørskov *et al.*^{9,10} The reaction free energies (ΔG) of every elemental step are calculated at standard conditions and defined as: ΔG $= \Delta E + \Delta ZPE - T\Delta S + \Delta G_{pH} + \Delta G_{U}$, where ΔE is the DFT reaction energy, ΔZPE is the difference in zero-point energy, *T* is the temperature (298.15K), ΔS is the change in the entropy, ΔG_{pH} and ΔG_{U} are the free energy contributions related to the pH value and electrode potential *U*. The important effect of the electrode potential on ΔG is quantified by $\Delta G_{U} = neU$, where *U* is the electrodepotential, and *n* is the number of electrons transferred in each elementary step. Note that *n* equals to 1 for single coupled proton and electron transfer step.^{9,11} $\Delta G_{pH} = k_{\rm B}T \ln 10 \times pH$, where $k_{\rm B}$ is Boltzmann's constant. pH is set as 0 in this work. The free energy of O₂(g) is derived as $G_{O2(g)} = 2G_{H2O(l)} - 2G_{H2} - 4.92$ eV, because the high-spin ground state of O₂ molecule cannot be well described in the framework of DFT calculations. The free energy of H₂O(*l*) is calculated as $G_{H2O(l)} = G_{H2O(g)} + RT \times \ln(p/p_0)$, where *R* is the ideal gas constant, T = 298.15 K, p = 0.035 bar, and $p_0 = 1$ bar.¹² $G_{H2O(g)}$ can be directly obtained by DFT calculations.

<u> </u>				U			
graphitic-type	Site	А	В	С	D	Е	
	$E_{\rm f}$	1.06	1.45	1.46	1.06	1.27	
pyridine-type	Site	F	G	Н	Ι	J	Κ
	E_{f}	1.09	0.42	0.51	0.44	0.46	0.47

Table S1. Formation energies (E_f) of substitutional N atom in olympicene.^a The corresponding substitutional sites are shown in Fig.S1. All results are in the unit of eV.

^aThe nitrogen substitution formation energy ($E_{\rm f}$) can be determined by $E_{\rm f} = E_{\rm N-Oly} +$

 $E_{\rm C} + mE_{\rm H} - E_{\rm Oly} - E_{\rm N}$, where $E_{\rm N-Oly}$ and $E_{\rm Oly}$ are the total energies of N-doped

olympicene and pristine olympicene, respectively. $E_{\rm C}$, $E_{\rm H}$, and $E_{\rm N}$ are the total

energies of single atom in graphene, hydrogen molecule, and nitrogen molecule,

respectively. *m* equals 0 or 1 for graphitic-type or pyridine-type N-doped olympicenes.

Based on these definitions, the smaller the $E_{\rm f}$, the more energy favorable for nitrogen

atom substituted.

Table S2. Adsorption energies(E_{ad}) of OOH, O, OH, and CO on N-olympicenes and N-olympicene/graphene hybrids and *p*-band center (ε_p) of N-olympicene and N-olympicene/graphene hybrids. All results are in unit of eV.

	OOH	0	OH	СО	\mathcal{E}_p
N _A -olympicene	1.24	3.32	2.54	0.14	-8.315
N _A -olympicene/Graphene	0.77	2.92	2.05	0.11	-8.487
N _D -olympicene	1.71	3.78	3.01	0.15	-7.946
N _D -olympicene/Graphene	1.27	3.51	2.58	0.08	-8.168
N _G -olympicene	0.04	2.88	1.36	0.07	-6.384
N _G -olympicene/Graphene	-0.03	2.79	1.28	0.07	-6.441

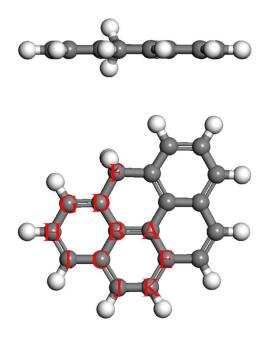


Fig.S1. Atomic structures of pristine olympicene.

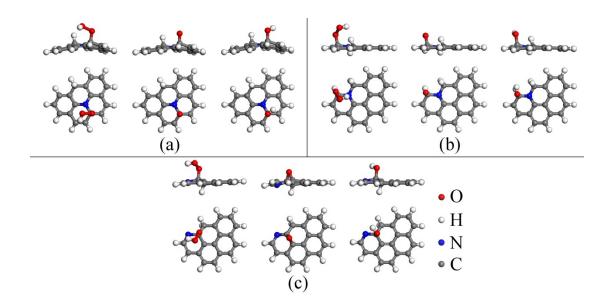


Fig. S2. Preferred adsorption structures of ORR intermediates on N_A -olympicene (a), N_D -olympicene (b), and N_G -olympicene (c).

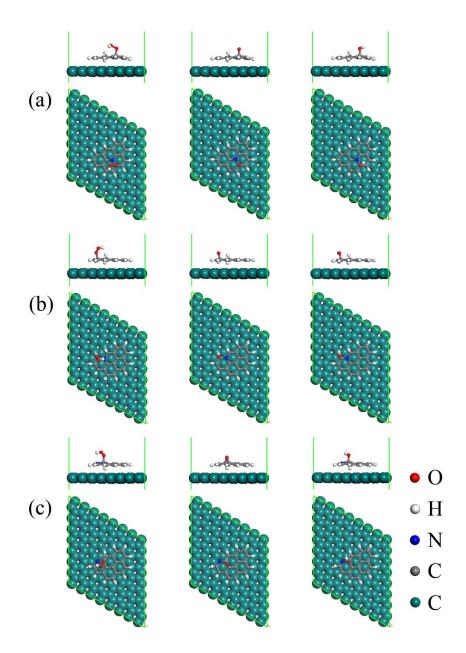


Fig. S3. Preferred adsorption structures of ORR intermediates on N_A -

olympicene/graphene (a), N_D -olympicene/graphene (b), and N_G -olympicene/graphene

(c).

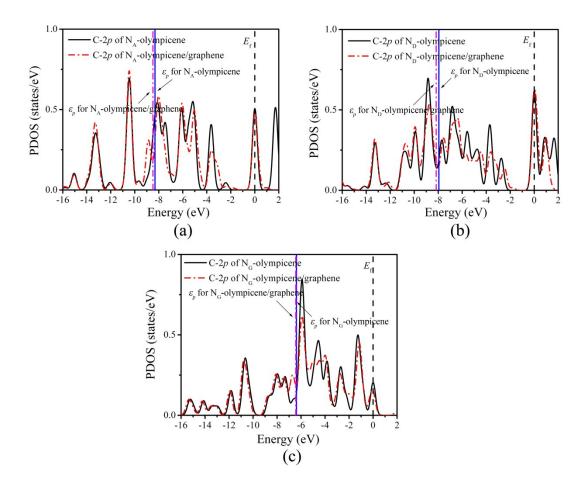


Fig. S4. Partial density of states (PDOS) for C atom near doped N atom in Nolympicenes and N-olympicene/graphene hybrids. E_f and ε_p are Fermi energy level

and *p*-band center.

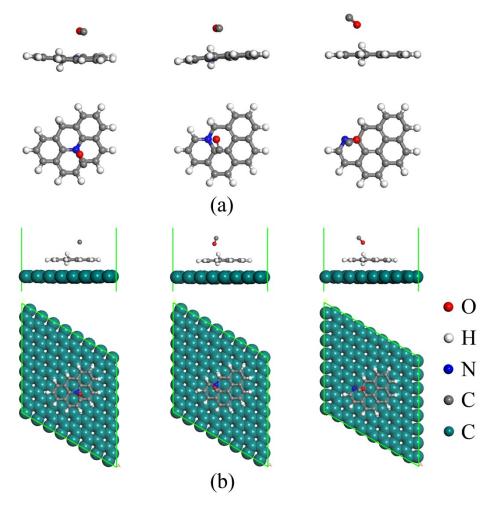



Fig. S5. Adsorption structures for CO on N-olympicenes (a), and N-

olympicene/graphene hybrids (b).

Table S3. The number of occupied p-electrons for C atom in N-olympicenes. All results are based on integrated partial density of states. The atomic indexes are shown below. N_A -oly, N_A -oly/Gra, N_D -oly, N_D -oly/Gra, N_G -oly and N_G -oly/Gra stand for N_A -olympicene, N_A -olympicene/Graphene, N_D -olympicene, N_D -olympicene

Atom index	N _A -oly	N _A -oly/Gra	N _D -oly	N _D -oly/Gra	N _G -oly	N _G -oly/Gra
1	2.919	2.898	2.936	2.951	2.866	2.855
2	2.917	2.927	2.921	2.901	2.864	2.848
3	2.898	2.877	2.908	2.885	2.756	2.751
4	2.901	2.888	2.785	2.806	3.839	3.803
5	2.807	2.799	2.801	2.793	2.801	2.784
6	2.657	2.659	2.641	2.645	2.830	2.810
7	2.899	2.876	2.894	2.866	2.905	2.882
8	2.686	2.720	2.822	2.816	2.775	2.757
9	2.840	2.824	3.891	3.892	2.660	2.660
10	2.999	3.003	2.861	2.862	3.025	3.019
11	3.924	3.927	2.852	2.819	2.721	2.727
12	2.657	2.659	2.788	2.779	2.824	2.801
13	2.899	2.876	2.895	2.873	2.886	2.868
14	2.917	2.927	2.917	2.891	2.808	2.803
15	2.840	2.824	2.829	2.814	2.730	2.740
16	2.901	2.888	2.909	2.885	2.854	2.847
17	2.807	2.799	2.806	2.789	2.839	2.811
18	2.919	2.898	2.908	2.880	2.804	2.802
19	2.898	2.877	2.902	2.878	2.891	2.877

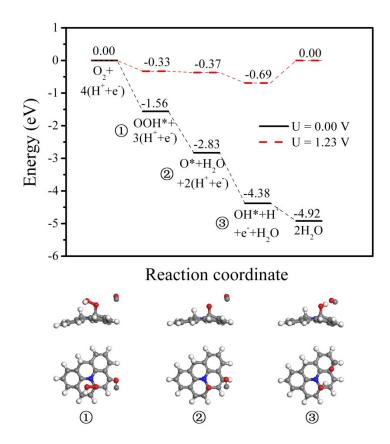


Fig. S6. Schematic free energy diagrams of ORR on N_A-olympicene with the existing of one CO molecule. Selected intermediate structures are also shown.

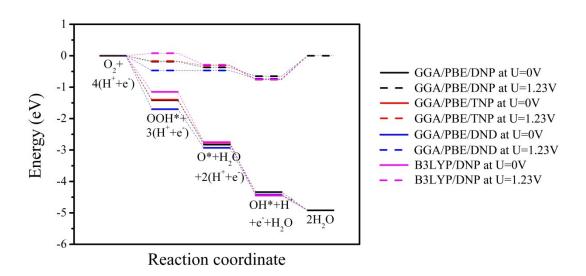


Fig. S7. Schematic free energy diagrams of ORR on N_A -olympicene with different

basis sets and functionals.

References:

- 1 B. Delley, J. Chem. Phys., 1990, 92, 508.
- 2 B. Delley, J. Chem. Phys., 2000, 113, 7756.
- 3 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 4 D. D. Koelling, and B. N. Harmon, J. Phys. C: Solid State Phys., 1977, 10, 3107.
- 5 S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- 6 B. Delley, Mol. Simul., 2006, 32, 117.
- 7 W. Liu, A. Tkatchenko, and M. Scheffler, Acc. Chem. Res., 2014, 47, 3369.
- 8 W. Liu, S. N. Filimonov, J. Carrasco, and A. Tkatchenko, *Nat. Commun.*, 2013, 4, 2569.
- 9 J. Rossmeisl, J. K. Nørskov, C. D. Taylor, M. J. Janik, and M. Neurock, *J. Phys. Chem. B*, 2006, **110**, 21833.
- 10 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, *J. Phys. Chem. B*, 2004, **108**, 17886.
- 11 L. Yu, X. Pan, X. Cao, P. Hu, and X. Bao, J. Catal., 2011, 282, 183.
- 12 Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 4394.