Electronic Supplementary Information

Solubility and solvation of monosaccharides in ionic liquids

Ana Rita R. Teles,^a Teresa B. V. Dinis,^a Emanuel V. Capela,^a Luís M. N. B.

F. Santos,^b Simão P. Pinho,^c Mara G. Freire^{a*} and João A. P. Coutinho^a

^aCICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal

^bCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal

^cAssociate Laboratory LSRE-LCM, Departamento de Tecnologia Química e Biológica, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5301-857 Bragança, Portugal

*Corresponding author: E-mail address: maragfreire@ua.pt; Tel: +351-234370200; Fax: +351-234370084.

Compound	Water Content (wt%)			
D-(+)-glucose	0.598			
D-(+)-mannose	0.654			
D-(-)-fructose	0.080			
D-(+)-galactose	0.373			
D-(+)-xylose	0.142			
L-(+)-arabinose	0.510			
$[C_4C_1im][N(CN)_2]$	0.010			
[C ₄ C ₁ im][(OCH ₃) ₂ PO ₄]	0.078			
[P66614][N(CN)2]	0.033			
[P _{6 6 6 14}]Cl	0.163			

Table S1. Weight percentage (wt%) of water in the studied monosaccharides and ionic liquids.

	D-(+)-glucose				D-(-)-fructose				
T/		XGlucos	XGlucose (± o)			XFrustose (±σ)			
K	This work	Carneiro	eiro Paduszynski		This work	Carneiro	Paduszynski		
		<i>et al</i> . ¹	<i>et al.</i> ²	al. ³		<i>et al</i> . ¹	$et al.^2$		
288	0.142	0.133			0.132	0.281			
	(± 0.007)	0.155			(± 0.005)	0.201			
200	0.170	0.165	0.146	0.153	0.210	0.11			
290	(±0.009)	0.105		0.140	(± 0.004)	0.310	0.11		
308	0.191	0.102	0.186	0.210	0.178	0.240			
	(±0.006)	0.192			(± 0.004)	0.340			
210	0.229	0.210	0.217		0.201	0 279	0.174		
318	(±0.010)	0.210			(±0.005)	0.378			
220	0.250	0.226	0.276		0.220	0.410	0.202		
528	(±0.007)	0.230			(±0.006)	0.410			
220	0.280		0.225		0.245		0.257		
330	(±0.004)		0.555		(± 0.008)		0.237		
345			0.391				0.344		
348	0.319		0.441	0 200	0.275		0.402		
	(±0.005)		0.441	0.398	(±0.009)		0.402		
355			0.496				0.465		
358			0.542						
361			0.606				0.541		
366			0.766				0.648		
368							0.749		

Table S2. Mole fraction solubility of monosaccharides in $[C_4C_1im][N(CN)_2]$ at different temperatures, and comparison with data from the literature.

Monosaccharide	D-(+)-glucose					
T/K		XGlucose (±σ)				
<i>1</i> / K _	This work	Carneiro <i>et al</i> . ¹	Rosatella <i>et al.</i> ⁴			
288	0.007 (±0.001)	0.0018				
298	0.009 (±0.002)	0.0024				
308	0.012 (±0.001)	0.0037	0.0151			
318	0.013 (±0.001)	0.0048				
328	0.018 (±0.001)					
338	0.027 (±0.003)					
348	0.029 (±0.002)					

Table S3. Mole fraction solubility of D-(+)-glucose in $[P_{6,6,6,14}][N(CN)_2]$ at different temperatures, and comparison with data from the literature.

Table S4. Fitting parameters of the linear function corresponding to the solubility of monosaccharides, as the natural logarithm of the mole fraction, $lnx_{Glucose}$, in the studied ILs, *versus* the reciprocal temperature (1/*T*).

Monosaccharide Linear equation		R ²				
[C4C1im][N(CN)2]						
D-(+)-glucose	$\ln x = -1331.6 \cdot 1/T + 2.680$	0.9978				
D-(+)-mannose	$\ln x = -1353.6 \cdot 1/T + 2.920$	0.9965				
D-(-)-fructose	$\ln x = -1203.1 \cdot 1/T + 2.164$	0.9967				
D-(+)-galactose	$\ln x = -1240.8 \cdot 1/T + 2.368$	0.9952				
D-(+)-xylose	$\ln x = -1327.4 \cdot 1/T + 2.896$	0.9974				
L-(+)-arabinose	$\ln x = -1260.3 \cdot 1/T + 2.423$	0.9979				
	[C4C1im][(OCH3)2PO4]					
D-(+)-glucose	$\ln x = -3872.2 \cdot 1/T + 10.006$	0.9837				
D-(+)-mannose	$\ln x = -4084.5 \cdot 1/T + 10.672$	0.9956				
D-(-)-fructose	$\ln x = -4112.2 \cdot 1/T + 10.138$	0.9885				
D-(+)-galactose	$\ln x = -3490.3 \cdot 1/T + 9.511$	0.9849				
D-(+)-xylose	$\ln x = -3779.1 \cdot 1/T + 10.632$	0.9838				
L-(+)-arabinose	$\ln x = -3729.2 \cdot 1/T + 9.949$	0.9986				
[P6,6,6,14][N(CN)2]						
D-(+)-glucose	$\ln x = -2434.9 \cdot 1/T + 3.455$	0.9803				
[P6,6,6,14]Cl						
D-(+)-glucose	$\ln x = -3984.1 \cdot 1/T + 8.838$	0.9727				

Table S5. Melting temperature, $T_{\rm m}$ (in K), and thermodynamic solution properties (in kJ·mol⁻¹) of monosaccharides in water and methanol at 298 K: enthalpy of melting, $\Delta H_{\rm m}$, enthalpy of solution, $\Delta H_{\rm sol}$, entropy of solution, $T\Delta S_{\rm sol}$, Gibbs free energy of solution, $G_{\rm sol}$, and respective uncertainties (within brackets).

Monosaccharide	$\Delta H_{ m m}$	$T_{\rm m}\left({\rm K} ight)$	$\Delta H_{ m sol}$	$T\Delta S_{\rm sol}$	$\Delta G_{ m sol}$	$\Delta H_{ m sol}$	$T\Delta S_{\rm sol}$	$\Delta G_{ m sol}$
				Water			Methanol	
D-(+)-glucose	32.3^{20}	423.2^{21}	19.41	13.61	5.80	28.08	14.05	14.03
D-(+)-mannose	24.7^{20}	407.2^{20}	^a	^a	^a	34.15	22.19	11.96
D-(-)-fructose	26.022	378.223	11.32	8.24	3.09	47.51	37.83	9.68
D-(+)-galactose	43.8^{20}	436.2 ²⁰	17.07	9.72	7.35	33.99	16.96	17.02
D-(+)-xylose	31.7^{20}	423.221	13.51	8.42	5.09	38.64	25.50	13.14
L-(+)-arabinose	35.8 ²⁰	428.7 ²²	11.31	3.99	7.32	36.78	21.85	14.93

^aInsufficient available data for a coherent analysis

Figure S1. Solubility of D-(+)-glucose, as the natural logarithm of the mole fraction (lnx_{Glucose}), in [C₄C₁im][N(CN)₂], *versus* the reciprocal temperature (1/*T*): ▲, This work; ▲, Carneiro *et al.*;¹ ▲, Paduszynski *et al.*;² and ▲, Liu *et al.*³

Figure S2. Solubility of D-(-)-fructose, as the natural logarithm of the mole fraction (lnx_{Fructose}), in [C₄C₁im][N(CN)₂], *versus* the reciprocal temperature (1/*T*): ●, This work;
●, Carneiro *et al.*;¹ and ●, Paduszynski *et al.*²

Figure S3. Solubility of D-(+)-glucose, as the natural logarithm of the mole fraction $(\ln x_{Glucose})$, in $[P_{6,6,6,14}][N(CN)_2]$, *versus* the reciprocal temperature (1/T): \blacktriangle , This work; \bigstar , Carneiro *et al.*;¹ and \bigstar , Rosatella *et al.*⁴

Figure S4. Solubility of D-(+)-glucose, as the natural logarithm of the mole fraction $(\ln x_{Glucose})$, in the studied ionic liquids, water and methanol, *versus* the reciprocal temperature (1/T): \blacktriangle , $[C_4C_1im][N(CN)_2]$; \bigstar , $[C_4C_1im][(OCH_3)_2PO_2]$; \bigstar , $[P_{66614}]Cl$; \bigstar , $[P_{66614}][N(CN)_2]$; \bigstar , water from Stephen and Stephen;⁵ •, water from Mullin;⁶ •, water from Alves *et al.*;⁷ •, water from Peres and Macedo;⁸ \bigstar , methanol from Stephen and Stephen;⁵ •, methanol from Peres and Macedo;⁸ and •, methanol from Putten *et al.*⁹

Figure S5. Solubility of D-(-)-fructose, as the natural logarithm of the mole fraction $(\ln x_{Fructose})$ in the studied ionic liquids, water and methanol, *versus* the reciprocal temperature (1/T): •, $[C_4C_1im][N(CN)_2]$; •, $[C_4C_1im][(OCH_3)_2PO_2]$; •, water from Mullin;⁶ •, water from Jackson *et al.*;¹⁰ •, water from Crestani *et al.*;¹¹ •, water from Alavi *et al.*;¹² •, methanol from Putten *et al.*;⁹ •, methanol from Peres and Macedo;¹³ and •, methanol from Montañés *et al.*¹⁴

Figure S6. Solubility of L-(+)-arabinose, as the natural logarithm of the mole fraction $(\ln x_{Arabinose})$ in the studied ionic liquids, water and methanol, *versus* the reciprocal temperature (1/T): •, $[C_4C_1im][N(CN)_2]$; •, $[C_4C_1im][(OCH_3)_2PO_2]$; •, water from Jiang *et al.*;¹⁵ •, water from Gray *et al*;¹⁶ and •, methanol from Putten *et al.*⁹

Figure S7. Solubility of D-(+)-mannose, as the natural logarithm of the mole fraction $(\ln x_{\text{Mannose}})$ in the studied ionic liquids and water, *versus* the reciprocal temperature (1/T): *****, $[C_4C_1\text{im}][N(CN)_2]$; *****, $[C_4C_1\text{im}][(OCH_3)_2PO_2]$; **^**, methanol from Stephen and Stephen;⁵ and *****, methanol from Putten *et al.*⁹

Figure S8. Solubility of D-(+)-xylose, as the natural logarithm of the mole fraction $(\ln x_{Xylose})$ in the studied ionic liquids, water and methanol, *versus* the reciprocal temperature (1/T): \blacksquare , $[C_4C_1im][N(CN)_2]$; \blacksquare , $[C_4C_1im][(OCH_3)_2PO_2]$; \bullet , water from Gray *et al*;¹⁶ \blacksquare , water from Jónsdóttir *et al*.;¹⁷ \blacklozenge , water from Goldberg *et al*.;¹⁸ \blacktriangle , water from Martínez *et al*.;¹⁹ and \blacksquare , methanol from Putten *et al*.⁹

Figure S9. Solubility of D-(+)-galactose, as the natural logarithm of the mole fraction $(\ln x_{Galactose})$ in the studied ionic liquids, water and methanol, *versus* the reciprocal temperature (1/T): \blacklozenge , $[C_4C_1im][N(CN)_2]$; \blacklozenge , $[C_4C_1im][(OCH_3)_2PO_2]$; \blacklozenge , water from Jónsdóttir *et al.*;¹⁷ and \diamondsuit , methanol from Montañés *et al.*¹⁴

Figure S10. Mole fraction solubility of D-(+)-xylose (square dots) and D-(+)-galactose (diamond dots) in ionic liquids: \blacksquare , [C₄C₁im][N(CN)₂]; \blacksquare , [C₄C₁im][(OCH₃)₂PO₂]; \blacklozenge , [C₄C₁im][N(CN)₂]; and \blacklozenge , [C₄C₁im][(OCH₃)₂PO₂].

References

- A. P. Carneiro, O. Rodriguez and E. A. Macedo, *Ind. Eng. Chem. Res.*, 2013, 52, 3424-3435.
- K. Paduszynski, M. Okuniewski and U. Domanska, *Ind. Eng. Chem. Res.*, 2013, 52, 18482-18491.
- Q. B. Liu, M. H. A. Janssen, F. van Rantwijk and R. A. Sheldon, *Green Chem.*, 2005, 7, 39-42.
- 4. A. A. Rosatella, L. C. Branco and C. A. M. Afonso, *Green Chem.*, 2009, **11**, 1406-1413.
- H. Stephen and T. Stephen, Solubilities of Inorganic and Organic Compounds: Binary Systems, Pergamon Press, Oxford, 1963.
- 6. J. W. Mullin, *Crystallization*, Butterworth-Heinemann, Oxford, fourth edition edn., 2001.
- L. A. Alves, J. B. Almeida e Silva and M. Giulietti, *J. Chem. Eng. Data*, 2007, 52, 2166-2170.
- 8. A. M. Peres and E. A. Macedo, *Ind. Eng. Chem. Res.*, 1997, **36**, 2816-2820.
- 9. R.-J. van Putten, J. G. M. Winkelman, F. Keihan, J. C. van der Waal, E. de Jong and H. J. Heeres, *Ind. Eng. Chem. Res.*, 2014, **53**, 8285-8290.
- R. F. Jackson, C. G. Silsbee and M. J. Proffitt, Scientific Papers of Bureau of Standards, 1926, 519, 587-617.
- C. E. Crestani, A. Bernardo, C. B. B. Costa and M. Giulietti, *J. Chem. Eng. Data*, 2013, **58**, 3039-3045.
- 12. T. Alavi, G. Pazuki and A. Raisi, J. Food Sci., 2014, 79, E839-E848.
- 13. E. A. Macedo and A. M. Peres, Ind. Eng. Chem. Res., 2001, 40, 4633-4640.

- F. Montañés, A. Olano, E. Ibáñez and T. Fornari, *AlChE J.*, 2007, 53, 2411-2418.
- 15. L. Jiang, S. Li, J. Jiang, J. Qiu and P. Wang, J. Mol. Liq., 2015, 211, 406-410.
- M. C. Gray, A. O. Converse and C. E. Wyman, *Appl. Biochem. Biotechnol.*, 2003, **105**, 179-193.
- S. O. Jónsdóttir, S. A. Cooke and E. A. Macedo, *Carbohydr. Res.*, 2002, 337, 1563-1571.
- R. N. Goldberg, B. E. Lang, B. Coxon and S. R. Decker, *J. Chem. Thermodyn.*, 2012, **52**, 2-10.
- E. A. Martínez, M. Giulietti, M. Uematsu, S. Derenzo and J. B. Almeida e Silva, Chem. Prod. Process Model., 2011, 6, 1934-2659.
- 20. Y. H. Roos, Carbohydr. Res., 1993, 238, 39-48.
- 21. A. Raemy and T. F. Schweizer, J. Therm. Anal., 1983, 28, 95-108.
- J. A. Dean and N. A. Lange, *Lange's handbook of chemistry*, McGraw-Hill Book Company, New York, Thirteenth edition edn., 1985.
- O. Ferreira, E. A. Brignole and E. A. Macedo, *Ind. Eng. Chem. Res.*, 2003, 42, 6212-6222.