Electronic Supplementary Information (ESI) for PCCP

Alcohols as Molecular Probes in Ionic Liquids: Evidence for Nanostructuration

Inês C. M. Vaz,^{*a*} Arijit Bhattacharjee,^{*a,b*} Marisa A. A. Rocha,^{*a*} João A. P. Coutinho,^{*b*} Margarida Bastos^{*a*} and Luís M. N. B. F. Santos^{*,*a*}

^{*a*} Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, P-4169-007 Porto, Portugal.

^b Departamento de Química, CICECO, Universidade de Aveiro, P-3810-193 Aveiro, Portugal

*To whom correspondence should be addressed. E-mail: <u>lbsantos@fc.up.pt</u>; Phone: +351 220402536;

cation	anion	abbreviation
CH_3 $+$ C_nH_{2n+1} Imidazolium (im)	$F \xrightarrow{F}_{F} \xrightarrow{F}_{F}$ Bis(trifluoromethylsulfonyl)imide (NTf ₂)	[C _n C ₁ im][NTf ₂]
R: -CH ₂ -CH ₃		$[C_2C_1im][NTf_2]$
R: -(CH ₂) ₂ -CH ₃		$[C_3C_1im][NTf_2]$
R: -(CH ₂) ₃ -CH ₃		$[C_4C_1im][NTf_2]$
R: -(CH ₂) ₄ -CH ₃		$[C_5C_1im][NTf_2]$
R: -(CH ₂) ₅ -CH ₃		$[C_6C_1im][NTf_2]$
R: -(CH ₂) ₆ -CH ₃		$[C_7C_1im][NTf_2]$
R: -(CH ₂) ₇ -CH ₃		[C ₈ C ₁ im][NTf ₂]
R: -(CH ₂) ₈ -CH ₃		$[C_9C_1im][NTf_2]$
R: -(CH ₂) ₉ -CH ₃		$[C_{10}C_1im][NTf_2]$
R: -(CH ₂) ₁₀ -CH ₃		$[C_{11}C_1im][NTf_2]$
CH_3 + C_nH_{2n+1} Imidazolium (im)	$F \xrightarrow{F} F$ F F Hexafluorophosphate (PF ₆)	[C _n C ₁ im][PF ₆]
R: -(CH ₂) ₃ -CH ₃		$[C_4C_1im][PF_6]$
R: -(CH ₂) ₄ -CH ₃		$[C_5C_1im][PF_6]$
R: -(CH ₂) ₅ -CH ₃		$[C_6C_1im][PF_6]$
R: -(CH ₂) ₆ -CH ₃		$[C_7C_1im][PF_6]$
R: -(CH ₂) ₇ -CH ₃		$[C_8C_1im][PF_6]$
R: -(CH ₂) ₈ -CH ₃		$[C_9C_1im][PF_6]$

Table S1. Complete list of the schematic structures and abbreviations of the studied ionic liquids

ionic liquid	CAS registry number	source	purity	MW /g·mol ⁻¹			
$[C_nC_1im][NTf_2]$							
$[C_2C_1im][NTf_2]$	174899-82-2	IoLiTec	99.5 %	391.31			
$[C_3C_1im][NTf_2]$	216299-72-8	IoLiTec	99 %	405.34			
$[C_4C_1im][NTf_2]$	174899-83-3	IoLiTec	99 %	419.37			
$[C_5C_1im][NTf_2]$	280779-53-5	IoLiTec	>99 %	433.39			
$[C_6C_1im][NTf_2]$	382150-50-7	IoLiTec	99 %	447.42			
$[C_7C_1im][NTf_2]$	455382-14-5	IoLiTec	>99 %	461.45			
$[C_8C_1im][NTf_2]$	178631-04-4	IoLiTec	99 %	475.47			
$[C_9C_1im][NTf_2]$	_	IoLiTec	>99 %	489.50			
$[C_{10}C_1im][NTf_2]$	433337-23-6	IoLiTec	>98 %	503.53			
$[C_{11}C_1im][NTf_2]$	_	IoLiTec	97 %	517.55			
$[C_nC_1im][PF_6]$							
$[C_4C_1im][PF_6]$	174501-64 -5	IoLiTec	99 %	284.18			
$[C_5C_1im][PF_6]$	280779-52-4	IoLiTec	>99 %	298.21			
$[C_6C_1im][PF_6]$	304680-35-1	IoLiTec	99 %	312.24			
$[C_7C_1im][PF_6]$	357915-04-9	IoLiTec	>99 %	326.26			
$[C_8C_1im][PF_6]$	304680-36-2	IoLiTec	99 %	340.29			
$[C_9C_1im][PF_6]$	343952-29-4	IoLiTec	> 99 %	354.32			

Table S2. List of the studied ILs, CAS registry number, purity and molar mass

	$\Delta_{\rm solv} H_{\rm m}^{{\rm o},\infty}/{\rm kJ}\cdot{\rm mol}^{-1}$						
ionic liquid	propan-1-ol	butan-1-ol	pentan-1-ol				
$[C_nC_1im][NTf_2]$							
$[C_2C_1im][NTf_2]$	- 38.73 (± 0.21)	- 42.94 (± 0.23)	- 47.16 (± 0.25)				
$[C_3C_1im][NTf_2]$	- 38.87 (± 0.21)	- 43.20 (± 0.22)	- 47.58 (± 0.24)				
$[C_4C_1im][NTf_2]$	- 39.08 (± 0.27)	- 43.46 (± 0.28)	- 47.83 (± 0.29)				
[C ₅ C ₁ im][NTf ₂]	- 39.11 (± 0.21)	- 43.65 (± 0.21)	- 48.21 (± 0.23)				
$[C_6C_1im][NTf_2]$	- 39.32 (± 0.31)	- 44.00 (± 0.27)	$-48.49(\pm 0.28)$				
[C ₇ C ₁ im][NTf ₂]	- 39.07 (± 0.21)	- 43.90 (± 0.21)	$-48.70 (\pm 0.22)$				
[C ₈ C ₁ im][NTf ₂]	- 39.03 (± 0.21)	- 43.82 (± 0.21)	$-48.87 (\pm 0.21)$				
[C ₉ C ₁ im][NTf ₂]	- 38.98 (± 0.21)	- 43.85 (± 0.21)	- 48.91 (± 0.21)				
$[C_{10}C_1im][NTf_2]$	- 39.00 (± 0.21)	- 43.81 (± 0.21)	$-48.84 (\pm 0.21)$				
$[C_{11}C_1im][NTf_2]$	- 38.88 (± 0.21)	- 43.68 (± 0.21)	- 48.92 (± 0.21)				
	$[C_nC_1i$	m][PF ₆]					
$[C_4C_1im][PF_6]$	- 36.43 (± 0.25)	_	_				
$[C_5C_1im][PF_6]$	- 36.80 (± 0.19)	_	_				
$[C_6C_1im][PF_6]$	- 36.96 (± 0.24)	_	_				
$[C_7C_1im][PF_6]$	- 37.20 (± 0.40)	_	_				
$[C_8C_1im][PF_6]$	- 37.29 (± 0.38)	_	_				
$[C_9C_1im][PF_6]$	- 37.56 (± 0.37)	_	_				

Table S3. Standard ($p^{\circ}=0.10 \pm 0.01$ MPa) molar enthalpy of solvation at infinite dilution of propan-1-ol, butan-1-ol and pentan-1-ol in the studied ILs, at reference temperature (T=298.15 K)

* Uncertainties are the extended standard deviations considering the overall uncertainty.

		$\Delta_{ m solv} H_{ m v}^{ m o,\infty}/ m kJ\cdot m cm^{-3}$				
ionic liquid	propan-1-ol	butan-1-ol	pentan-1-ol			
$[C_nC_1im][NTf_2]$						
[C ₂ C ₁ im][NTf ₂]	$-0.5153 (\pm 0.0028)$	$-0.4668 (\pm 0.0025)$	$-0.4339 (\pm 0.0023)$			
$[C_3C_1im][NTf_2]$	$-0.5172 (\pm 0.0028)$	$-0.4697 (\pm 0.0024)$	$-0.4378 (\pm 0.0022)$			
$[C_4C_1im][NTf_2]$	$-0.5200 (\pm 0.0036)$	$-0.4725 (\pm 0.0031)$	$-0.4401 \ (\pm 0.0027)$			
$[C_5C_1im][NTf_2]$	$-0.5203 (\pm 0.0028)$	$-0.4746 (\pm 0.0023)$	$-0.4436 (\pm 0.0021)$			
$[C_6C_1im][NTf_2]$	$-0.5232 (\pm 0.0042)$	$-0.4784 (\pm 0.0030)$	$-0.4461 \ (\pm 0.0026)$			
$[C_7C_1im][NTf_2]$	$-0.5198 (\pm 0.0028)$	$-0.4773 (\pm 0.0023)$	$-0.4481 \ (\pm 0.0020)$			
$[C_8C_1im][NTf_2]$	$-0.5193 (\pm 0.0028)$	$-0.4764 (\pm 0.0023)$	$-0.4496 (\pm 0.0020)$			
$[C_9C_1im][NTf_2]$	$-0.5186 (\pm 0.0028)$	$-0.4767 (\pm 0.0023)$	$-0.4500 (\pm 0.0020)$			
$[C_{10}C_1im][NTf_2]$	$-0.5189 (\pm 0.0028)$	$-0.4763 (\pm 0.0023)$	$-0.4494 (\pm 0.0020)$			
$[C_{11}C_1im][NTf_2]$	$-0.5173 (\pm 0.0028)$	$-0.4749 (\pm 0.0023)$	$-0.4501 (\pm 0.0020)$			
[C _n C ₁ im][PF ₆]						
$[C_4C_1im][PF_6]$	$-0.4846 (\pm 0.0033)$	_	-			
$[C_5C_1im][PF_6]$	$-0.4896 (\pm 0.0025)$	_	_			
$[C_6C_1im][PF_6]$	$-0.4917 (\pm 0.0032)$	_	_			
$[C_7C_1im][PF_6]$	$-0.4950 (\pm 0.0053)$	_	_			
$[C_8C_1im][PF_6]$	$-0.4962 (\pm 0.0050)$	_	_			
$[C_9C_1im][PF_6]$	$-0.4998 (\pm 0.0049)$	_	_			

Table S4. Standard ($p^{\circ}=0.10 \pm 0.01$ MPa) enthalpy of solvation at infinite dilution per unit volume of propan-1-ol, butan-1-ol and pentan-1-ol in the studied ionic liquids, at reference temperature (T=298.15 K)

* The uncertainty is the extended standard deviation considering overall uncertainty.