Electronic Supporting Information

Understanding fundamental electrical and photoelectrochemical behavior of hematite photoanode

Mario R. S. Soares,^a Ricardo H. Gonçalves,^a Içamira C. Nogueira,^b Jefferson Bettini,^c Adenilson J. Chiquito^d and Edson R. Leite^a

- a. Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil.
- ^{b.} Postgraduate Program in Materials Engineering, Federal Institute of Maranhão IFMA, São Luís, MA, Brazil.
- ^{c.} Laboratório Nacional de Nanotecnologia LNNano, Caixa Postal 6192, BR-13083970, Campinas, SP, Brazil.
- ^{d.} Physics Department, Federal University of São Carlos, São Carlos, SP, Brazil.

Fig. S1. Optimization of the sintering process: a) relative density as function of the temperature (sintering time of 6 h.) for the hematite, considering different SnO_2 concentration; b) relative density as function of the concentration of SnO_2 (sintering temperature of 1300 °C, sintering time 6h).

Fig. S2. Rietveld refinements of the hematite doped with different SnO₂ concentration.

Undoped α -Fe₂O₃

Fig. S3. Schematic representation of the boundary space charge and the concentration of associated charged defects in the undoped hematite.

Fig. S4. Schematic representation of the brick-layer model used for the SSIS analysis.

Fig. S5. SSIS analysis (Nyquist plot) of the samples doped with 2% wt. of SnO_2 and treated at different atmospheres. The inset shows in detail the sample treated in N_2 flow.

Fig. S6. Analysis of the J vs. E plot.

Fig. S7. Breakdown voltage (V_{Br}) presented at J *vs.* E plot for the doped samples with 2% wt. of SnO₂ and treated at different atmospheres: black square represents sample as sintered; blue circle represents treatment in N₂ flow and red triangle represents treatment in O₂ flow.