Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Figure S1. Interaction potentials in CG degrees of freedom for CG models: (a) bond length, (b) bending angle, (c) dihedral angle, and (d) non-bonded LJ type of potentials.

Figure S2. The probability distribution functions: (a) bond length, (b) bending angle, (c) dihedral angle, and (d) non-bonded RDF at 463 K for the PS10 and PS100 systems. CG simulations using LJ 12-6,1 potential are compared to UA counterparts.

Figure S3. (a) The LJ potential in CG models with the bonded potentials derived from IBI method while the non-boned potentials still obtained by our combined method, which grows harder from A to C (left graph), and (b) the resulting bulk densities and Tg (right graph) compared with the results of UA counterpart and CG simulations with LJ 12-6,3 potential ($\sigma = 0.59$ nm, $\varepsilon = 3.3$ kJ/mol).

Figure S4. Temperature dependence of local conformational distributions (described in the CG degrees of freedom) in UA simulations for PS100 systems: (a) bond length, (b) bending angle, (c) dihedral angle, and (d) non-bonded RDF.

Figure S5. Temperature dependence of bonded distribution functions and non-bonded RDFs for LJ 9-6,1 potential in PS100 systems: (a) bond length, (b) bending angle, (c) dihedral angle, and (d) non-bonded RDF.

Figure S6. Temperature dependence of bonded distribution functions and non-bonded RDFs for LJ 12-6,1 potential in PS100 systems: (a) bond length, (b) bending angle, (c) dihedral angle, and (d) non-bonded RDF.

Figure S7. Non-bonded RDFs at 50 K for (a) LJ 9-6 type of potentials and (b) LJ 12-6 type of potentials, in the PS100 systems as compared with the UA results.

Figure S8. Calculated structure factor at 50 K for (a) LJ 9-6 type of potentials and (b) LJ 12-6 type of potentials, as compared with the UA results.

	$R_{\rm g}({\rm nm})$	R_{11} (nm)	<i>R</i> ₂₂ (nm)	<i>R</i> ₃₃ (nm)	b	С	κ^2		
UA	2.499±	1.613±	1.425±	1.266±	0.787±	0.429±	0.022±		
	0.001	0.001	0.001	0.001	0.002	0.002	0.001		
9-6,1	2.364±	1.452±	1.363±	1.272±	0.370±	0.240±	$0.007 \pm$		
	0.001	0.001	0.001	0.001	0.002	0.002	0.001		
9-6,2	$2.399 \pm$	$1.480\pm$	$1.381\pm$	1.287±	$0.408 \pm$	0.252±	$0.007\pm$		
	0.001	0.001	0.001	0.001	0.002	0.002	0.001		
9-6,3	2.391±	$1.462 \pm$	1.376±	1.297±	0.348±	0.210±	0.005±		
	0.001	0.001	0.001	0.001	0.001	0.002	0.001		
12-6,1	2.419±	1.494±	1.388±	1.300±	0.424±	0.238±	0.007±		

Table S1. Gyration radius R_g , components of the inertia tensor R_{11} , R_{22} and R_{33} , asphericity *b*, acylindricity *c* and relative shape anisotropy κ^2 of PS100 at 600 K.

	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12-6,2	2.401±	1.476±	1.388±	1.287±	0.388±	0.270±	0.007±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12-6,3	2.403±	1.476±	1.385±	1.294±	0.382±	0.243±	0.007±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table S2. Gyration radius R_g , components of the inertia tensor R_{11} , R_{22} and R_{33} , asphericity *b*, acylindricity *c* and relative shape anisotropy κ^2 of PS100 at 300 K.

-	5	1	15				
	$R_{\rm g}({\rm nm})$	R_{11} (nm)	<i>R</i> ₂₂ (nm)	<i>R</i> ₃₃ (nm)	Ь	С	κ ²
UA	2.463±	1.610±	1.397±	1.233±	0.858±	0.432±	0.024±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,1	2.269±	1.402±	1.303±	1.218±	0.375±	0.216±	0.007±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,2	2.334±	$1.481\pm$	1.317±	1.231±	0.569±	0.221±	0.013±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,3	2.249±	1.434±	1.359±	1.269±	0.330±	0.235±	0.005±
	0.001	0.001	0.001	0.001	0.001	0.002	0.001
12-6,1	2.314±	1.429±	1.333±	1.238±	0.387±	0.247±	$0.007 \pm$
	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12-6,2	$2.304\pm$	1.425±	1.333±	1.225±	0.394±	0.276±	0.008±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12-6,3	2.289±	1.420±	1.312±	1.226±	0.405±	0.218±	0.008±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table S3. Gyration radius R_{g} , components of the inertia tensor R_{11} , R_{22} and R_{33} , asphericity *b*, acylindricity *c* and relative shape anisotropy κ^2 of PS100 at 50 K.

	$R_{g}(nm)$	R_{11} (nm)	<i>R</i> ₂₂ (nm)	<i>R</i> ₃₃ (nm)	b	С	κ ²
UA	2.198±	1.457±	1.281±	1.035±	0.766±	0.569±	0.036±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,1	1.973±	1.204±	1.117±	1.093±	0.229±	0.054±	0.004±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,2	2.255±	1.343±	1.311±	1.250±	0.164±	0.156±	0.002±
	0.001	0.001	0.001	0.001	0.002	0.002	0.001
9-6,3	2.135±	1.275±	1.254±	1.166±	0.159±	0.213±	0.003±
	0.001	0.001	0.001	0.001	0.001	0.002	0.001
12-6,1	2.136±	1.336±	1.198±	1.159±	0.395±	$0.093 \pm$	0.008±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001

12-6,2	2.142±	1.326±	$1.207\pm$	1.171±	$0.345\pm$	$0.086 \pm$	0.006±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001
12-6,3	2.161±	1.363±	1.310±	1.046±	0.621±	0.452±	0.023±
	0.001	0.001	0.001	0.001	0.001	0.001	0.001

Table S4. Diffusion coefficient D and scaling factor f for different LJ potentials obtained from CG simulations at 463K.

	9-6,1	9-6,2	9-6,3	12-6,1	12-6,2	12-6,3
<i>D</i> (PS10), 10 ⁻⁶ cm ² /s	20.9±0.1	15.4±0.1	7.8±0.1	7.4±0.1	7.2±0.1	5.7±0.1
<i>f</i> (PS10)	20.7	15.3	7.7	7.3	7.1	5.7
<i>D</i> (PS100), 10 ⁻⁷ cm ² /s	12.4±0.1	6.0±0.1	4.0±0.1	3.4±0.1	3.1±0.1	2.3±0.1
<i>f</i> (PS100)	134.8	65.2	43.5	37.0	33.7	25.0