Manupulating Proton Transfer Process in Molecular Complexes: Synthesis and Spectroscopic Studies

Sumit Kumar Panja, Nidhi Dwivedi, and Satyen Saha* Department of Chemistry, Centre for Advanced Studies, Institute of Science, Banaras Hindu University, Varanasi-221005, India

Synthetic Procedures for Molecular Complex

N-methylpiperidine (1.01 mmol) was taken in 50 ml round bottom flask containing 5 ml CHCl₃ and nitrophenol derivative (1 mmole) was added. Immediate yellowish coloured liquid was obtained. Resulting yellowish solution was stirred for 1-2 h at room temperature and was kept in refrigerator. Finally yellow colour crystal was separated out from solvent. After detailed analysis, we found that 1:2 stoichiometric molecular complex for 4-nitrophenol with N-methylpiperidine whereas 1:1 stoichiomeric molar complex for 2,4-dinitrophenol and 2,4,6-trinitrophenol with N-methylpiperidine.

Analytical data for [MP(NP)₂]: $C_{18}H_{23}N_3O_6$ Complex: C, 58.25 % (58.20 %); H, 6.20 % (6.16 %); N, 10.65 % (10.63 %); M.P.:63.2 °C; ¹H NMR (300 MHz, CDCl₃) : δ (ppm) 8.12 (d, J = 9 Hz, 4H), 6.80 (d, J = 9 Hz, 4H); 5.13 (broad, 1H), 2.81 (t, J = 8.1 Hz, 4H), 2.55 (s, 3H); 1.83-1.76 (m, 4H), 1.60-1.52 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ (ppm) 165.8, 139.5, 126.5, 116.5, 55.6, 45.0, 23.8, 22.2.

Analytical data for [MP(DNP)]: $C_{12}H_{17}N_3O_5$ Complex: C, 50.88 % (58.80 %); H, 6.05 % (6.00 %); N, 14.83 % (14.80 %); M.P.:143.2°C; ¹H-NMR (300 MHz, CDCl₃) : δ (ppm) 8.99 (s, 1H), 8.06 (d, J = 9.6 Hz, 1H), 6.69 (d, J = 9.3 Hz, 1H), 3.23 (broad, 1H), 3.17-3.02 (broad, 4H), 2.77 (broad, 3H), 1.93-1.87 (broad, 4H), 1.67-1.58 (broad, 2H); ¹³C-NMR (75 MHz, CDCl₃): δ (ppm) 170.3, 135.2, 132.1, 128.9, 126.7, 125.2, 55.6, 44.3, 22.9, 21.5.

Analytical data for [MP(TNP)]: $C_{12}H_{17}N_3O_5$ complex: C, 43.90 % (43.80 %); H, 4.91 % (5.00 %); N, 17.17 % (18.00 %); M.P.:226.6 °C; ¹H-NMR (300 MHz, CDCl₃) : δ (ppm) 8.88(s, 1H), 3.66 (broad, 1H), 2.86-2.02 (broad, 7H), 1.9 (broad, 4H), 1.93 (broad, 2H); ¹³CNMR (75 MHz, CDCl₃): δ (ppm) 162.0, 141.63, 128.1, 126.5, 55.9, 44.5, 22.8, 21.4.

Conformational Analysis

Theoretically we have also calculated energy of the conformational changes of protonated piperidium cation from conformer I to conformer II. It is observed that the conformational energy is \sim 2.4 kcalmol⁻¹ i.e. easity available at room temperature condition.

Figure 1. Conformational change between me-Axial and meequatorial of protonated (NPH⁺) from DFT calculation

Thermo gravimetric analysis (TGA)

Figure 2: TGA Plots of MP(NP)₂ Molecular Complex

Figure 3: TGA Plots of MP(DNP) Molecular Complex

Figure 4: TGA Plots of MP(TNP) Molecular Complex

Single Crystal X-ray Diffraction

Figure 5: ORTEP diagram of MP(NP)2 (CCDC No.: 881652)

Figure 6: ORTEP diagram of MP(DNP) (CCDC No.: 873550).

Figure 7: ORTEP diagram of MP(TNP) (CCDC No.: 917775).

Table	1:	Cry	zstallo	orar	hic	data
Ian	1.	CIN	stano	'grai	JIII C	uata

Compound	$MP(NP)_2$	MP(DNP)	MP(TNP)
Formula	C ₁₈ H ₂₃ N ₃ O ₆	$C_{12} H_{17} N_3 O_5$	$C_{12} H_{16} N_4 O_7$
Fw	377.39	283.29	328.29
a (Å)	6.5076(3)	7.5357(6)	7.123(5)
b (Å)	7.9798(6)	17.1542(11)	20.470(5)
<i>c</i> (Å)	18.3407(14)	10.8286(9)	10.498(5)
α (°)	90.054(6)	90	90
β (°)	92.065(5)	102.802(9)	93.020(5)
γ (°)	98.928(5)	90	90
V (Å ³)	940.25(11)	319.54(5)	1528.6(13)
Ζ	2	4	4
space group	P-1	P21/c	P21/n
D_{calcd} (g cm ⁻³)	1.333	1.378	1.427
$R (F_o^2)^a$	0.0523	0.0570	0.0583
$R_w(F_o^2)^b$	0.1095	0.1282	0.1393

 $aR = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|^{b}R_{w} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{o}^{4})]^{1/2}$

2 0	U	U	<pre> / -</pre>	
D-HA	d(D-H)	d(HA)	<dha< td=""><td>d(DA)</td></dha<>	d(DA)
C2-H2AO26#1	0.970	2.462	139.39	3.260
C3-H3AO15#2	0.970	2.611	167.81	3.565
C7-H7BO26#1	0.960	2.535	138.91	3.319
С23-Н23О15#3	0.930	2.648	151.91	3.496
O25-H25O15	0.820	1.701	172.47	2.516
N1-H1O25#2	0.953	1.811	171.68	2.758

Table 2: Hydrogen bond lengths (Å) and angles (⁰) of MP(NP)₂

Symmetry transformations used to generate equivalent atoms: #1 -x, -y+3, -z; #2 x, y+1, z; #3 x-1, y, z;

Table 3: Hydrogen bond lengths (Å) and angles (⁰) of MP(DNP)

D-HA	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th></dha<>	d(DA)
C7-H7AO19#1	0.960	2.536	151.86	3.413
С7-Н7ВО17	0.960	2.354	122.47	2.982
C7-H7CO18#2	0.960	2.504	138.08	3.282
N1-H1016	0.909	1.821	164.86	2.709
N1-H1017	0.909	2.517	119.45	3.068

Symmetry transformations used to generate equivalent atoms: #1 - x, -y+1, -z+1; #2 x, -y+3/2, z-1/2.

Table 4: Hydrogen bond lengths (Å) and angles (^O) of MP(TNP)

D-HA	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th></dha<>	d(DA)
C7-H7AO21#1	0.960	2.612	147.12	3.457
C7-H7BO18	0.960	2.574	123.99	3.211
N1-H1017	0.902	1.852	165.49	2.735

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z+2.

FTIR Spectra of Molecular Complexes

Figure 8: FTIR Spectra of MP, NP, DNP and TNP

%Transn

Figure 12: Theoretical FTIR Spectra of all three molecular Complexes

Stoichiomery of Molecular Complexes by Job's Method

Job's plot of MP(NP)2 in ACN at 420 nm

A series of solutions containing MP and NP were prepared such that sum of total number of mole MP and NP concentration remained constant ($1x10^{-3}(M)$). The mole fraction (X) of MP was varied from 0.1 to 1.0. The corrected absorbance ($OD_{420} \times X_{MP} \times 10^{-3}$) at 420 nm was plotted against the molar fraction of the MP.

Figure 13: Job's plot of MP(NP)₂ in ACN at 420 nm.

Job's plot of MP(DNP) in ACN at 425 nm

A series of solutions containing MP and DNP were prepared such that the sum of the total number of mole MP and DNP concentration remained constant $(1x10^{-3}(M))$. The mole fraction (X) of MP

was varied from 0.1 to 1.0. The corrected absorbance $(OD_{425} \times X_{MP} \times 10^{-3})$ at 425 nm was plotted against the molar fraction of the MP solution.

Figure 14: Job's plot of MP(DNP) in ACN at 425 nm.

Job's plot of MP(TNP) in ACN at 429 nm

A series of solutions containing MP and TNP were prepared such that the sum of the total number of mole MP and TNP concentration remained constant ($1x10^{-4}(M)$). The mole fraction (X) of MP was varied from 0.1 to 1.0. The corrected absorbance ($OD_{429} \times X_{NMP} \times 10^{-4}$) at 429 nm was plotted against the molar fraction of the MP solution.

Figure 15: Job's plot of MP(TNP) in ACN at 429 nm.

Table 5: λ_{max} and molar Absorption Coefficients of ICT band in ACN

X of MPX	λ_{max}/nm	E _{CT}	$\epsilon(\lambda_{max})/moldm^{-3}cm^{-1}$
----------	--------------------	-----------------	---

		(eV)	
$MP(NP)_2$	419	2.96	737
MP(DNP)	425	2.92	2262
MP(TNP)	429	2.89	7392

Calculation of Association Constant by Benesi-Hildebrand Method

Benesi-Hildebrand Plot of MP(NP)₂ Formation in ACN at 420 nm.

Stoichiometry and the formation constant of molecular complex in acetonitrile have been investigated exclusively using Benesi-Hildebrand equation. The spectrophotometric titration was employed for calculation of formation constant (K_A) of the molecular complex. The change in absorbance upon addition of MP to a solution of NP of fixed concentration is measured. The Benesi-Hildebrand equation is the following form for 1:2 stoichiometric systems.

$$\frac{1}{[A-A_0]} \frac{1}{K_{ICT} ([A_{max} - A_0])[MP]2} + \frac{1}{[A_{max} - A_0]}$$

Where, [MP] is the concentrations of MP (donor) and A is absorbance upon addition of MP. A_0 is the absorbance of NP (proton donor) in absence of MP (proton acceptor) at λ_{CT} against the solvent as reference

The 1:2 donor-acceptor interactions was analyzed according to Benesi-Hildebrand equations for spectroscopic UV-Vis titration.

Figure 16: H-B plot of $MP(NP)_2$ molecular complex formation in acetonitrile solvent. Absorbance was monitored at 419 nm.

Table 5: B-H plot	t of $MP(NP)_2$	in ACN	at 420 nm	
Parameters	Intercept	Slope	Association Constant (K _A)	Stoichiometry

Linear Plot	1.75424	1.85x10 ⁻⁶	9.4x10 ⁵ (M ⁻²)	1:2
-------------	---------	-----------------------	--	-----

Benesi-Hildebrand plot of MP(DNP) formation in ACN at 425 nm.

Stoichiometry and the formation constant (K_A) of MP(DNP) in acetonitrile solvent at room temperature have been investigated exclusively using Benesi-Hildebrand equation. The spectrophotometric titration was employed for calculation of formation constant (K_A) of the complex. The change in absorbance upon addition of MP to a solution of DNP of fixed concentration is measure. The Benesi-Hildebrand equation is the following form for 1:1 stoichiometric system.

$$\frac{1}{[A-A_0]} = \frac{1}{K_{CT} ([A_{max} - A_0])[MP]} + \frac{1}{[A_{max} - A_0]}$$
......2

Where, [MP] is the concentrations of MP (proton acceptor) and A is absorbance upon addition of MP. A₀ is the absorbance of DNP (proton donor) in absence of MP (donor) at λ_{CT} against the solvent as reference.

Figure 17: H-B plot of MP(DNP) in ACN at 425 nm.

The 1:1 donor-acceptor interactions was analysed according to Benesi-Hildebrand equations for spectroscopic UV-Vis titration

Table 6: B-H plot of MP(DNP) in ACN at 425 nm					
Parameters	Intercept	Slope	Association Constant (K _A)	Stoichiometry	

Linear Plot $0.06226 6.9677 \times 10^{-5} 8.93 \times 10^2 (M^{-1}) 1:1$	Linear Plot	0.06226	6.9677x10 ⁻⁵	8.93x10 ² (M ⁻¹)	1:1	
---	-------------	---------	-------------------------	---	-----	--

Benesi-Hildebrand plot plot of MP(TNP)₂ formation in ACN at 429 nm

Stoichiometry and the formation constant (K_A) of MP(TNP) in ACN have been investigated exclusively using Benesi-Hildebrand equation. The spectrophotometric titration was employed for calculation of formation constant (K_A) of the complex. The change in absorbance upon addition of MP to a solution of TNP of fixed concentration is measured. The Benesi-Hildebrand equation is the following form for 1:1 stoichiometric system.

$$\frac{1}{[A-A_0]} \frac{1}{K_{ICT}([A_{max} - A_0])[MP]} + \frac{1}{[A_{max} - A_0]}$$
.....2

Where, [MP] is the concentrations of MP (donor) and A is absorbance upon addition of NMP. A_0 is the absorbance of TNP (proton donor) in absence of MP (proton acceptor) at λ_{CT} against the solvent as reference

The 1:1 donor-acceptor interactions was analyzed according to Benesi-Hildebrand equations for spectroscopic UV-Vis titration.

Figure 18: H-B plot of MP(TNP) in ACN at 429 nm (Deconvoluted spectra).

Table 7. D-11 plot of Mr (1Nr) III ACN at 423 IIII					
Parameters	Intercept	Slope	Association Constant (K _A)	Stoichiometry	
Linear Plot	0.36036	8.6291x10 ⁻⁵	4.176 x10 ³ (M ⁻¹)	1:1	

Table 7: B-H plot of MP(TNP) in ACN at 425 nm

Figure 19: ¹H-NMR spectra of MP(NP)₂, MP(DNP) and MP(TNP) in D₂O (* due to the solvent)

Quantum Chemical Calculation

Figure 20b: Optimized Structure of Figure 20c: Optimized Structure MP(DNP)

of MP(TNP)

	SCXRD	DFT Result	SCXRD	DFT Result	SCXRD	DFT Result	XRD	DFT
	Angle of NHO		OH bond Length (A)		C-O bond Length		Inter nuclear distance (R)	
MP(NP) ₂	170.17	165.02	1.80 0.92	0.97 0.96	1.31 1.33	1.35 1.37	2.76 2.51	2.53 2.60
MP(DNP)	164.96	158.92	1.82	1.52	1.25	1.26	2.70	2.56
MP(TNP)	167.29	163.11	1.84	1.54	1.23	1.25	2.73	2.59

Table 8: Bond angle, bond length and inter nuclear distance from DFT results

 Table 9: HOMO, LUMO diagram and their corresponding energy

 MP(NP)2

Figure 21: UV-Vis (experimental) and TD-DFT plot of MP(DNP)

Figure 22: UV-Vis (experimental) and TD-DFT plot of MP(TNP)

Reference

- (a) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703; (b) Yang, C.; Liu, L.; Mu, T.-W.; Guo, Q.-X. Anal. Sci. 2000, 16, 537; (c) Rodriguez-Caceres, M. I.; Agbaria, R. A.; Warner, I. M. J. Fluoresc., 2005, 15, 185.
- 2. Sedo, G.; Leopold, K. R. Partial Proton Transfer in a Molecular Complex: Assessments from Both the Donor and Acceptor Points of View. *J. Phys. Chem.* A **2011**, 115, 1787-1794.
- 3. Koeppe, B.; Tolstoy, P. M.; Limbach, H. -H.; J. Am. Chem. Soc. 2011, 133, 7897-7908.

 (a) Libus, W.; Mecik, M.; Sulek, W. J. Sol. Chem. 1977, 6, 865; (b) Aono, S.; Kato, S. J. Comp. Chem. 2010, 31, 2924-31; (c) Foster, R. J. Phys. Chem. 1980, 84, 2135; (d) S. Nagakuara, S.; Gouterman, M. J. Chem. Phys. 1957, 26, 881; (e) Al-Ahmary, K. M.; Habeeb, M. M.; Al-Solmy, E. A. J. Molecu. Liquids, 2011, 158, 161.