Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

The photoenhanced aging process of soot by the heterogeneous ozonization reaction

Chong Han,^{ab} Yongchun Liu^{ac} and Hong He*ac

^aResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing,

100085, China

^bSchool of Metallurgy, Northeastern University, Shenyang, 110819, China

°Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment,

Chinese Academy of Sciences, Xiamen 361021, China.

*To Whom Correspondence Should Be Addressed:

E-mail address: honghe@rcees.ac.cn

Phone: +86-10-62849123

Fax: +86-10-62923563

Fig. S1. Fitting results for ATR-IR spectra in the range of 1800-1500 cm⁻¹ of soot aged by O₃

(2 ppm) for 5 h

Fig. S2. Changes of IR spectra of elemental carbon aged by O₃ (2 ppm) for 12 h under simulated sunlight

Fig. S3. Temporal changes of ATR-IR spectra in the range of 1800-1500 cm⁻¹ (The inset corresponds to ATR-IR spectra in the range of 3090-3000 cm⁻¹) for dried soot residues after *n*-hexane extraction toward O_3 (2 ppm) under simulated sunlight

Fig. S4. Temporal changes of integrated areas of Ar-H (3118-2950 cm⁻¹) on soot during the aging process by 2 ppm O₃ in the dark and under simulated sunlight