Electronic Supplementary Information

Can the state of platinum species be unambiguously determined by the stretching frequency of adsorbed CO probe molecule?

Hristiyan A. Aleksandrov,^{1,2} Konstantin M. Neyman,^{2,3} Konstantin I. Hadjiivanov,⁴ and Georgi N. Vayssilov^{1*}

- ¹ Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria e-mail: gnv@chem.uni-sofia.bg
- ² Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
- ³ Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain e-mail: konstantin.neyman@icrea.cat
- ⁴ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

Content

Table S1. Energetic (in eV) and structural (in pm) characteristics of the modeled Pt₈CO complexes in gas phase.

Figure S1. Optimized structures of the CO adsorbed on Pt₈ cluster in gas phase.

Figure S2. Optimized structure of the complex $Pt(CO)_2/Ce_{21}O_{42}$ in position e.

Figure S3. Calculated C-O vibrational frequency for CO coordinated on mononuclear platinum species on ceria nanoparticle versus the oxidation state of the platinum atom, *n*. **Figure S4.** Calculated C-O vibrational frequency for CO coordinated on mononuclear platinum species on ceria nanoparticle versus the calculated Bader charge of the platinum species.

Table S1.

Energetic (in eV) and structural (in pm) characteristics of the modeled Pt ₈ CO comp	plexes in
gas phase.	

Structure	C^{a}	Ns	${\rm E_{rel}}^b$	CN	BE	R(Pt-C)	$\Delta R(C-O)^{c}$	$v(C-O)^d$
Pt ₈ CO_a	t	2	0.00	5	2.73	184	2.2	2041
Pt ₈ CO_b	t	2	0.10	3	2.62	183	2.4	2024
Pt ₈ CO_c	t	2	0.34	5	2.38	183	2.2	2039
Pt ₈ CO_d	b	0	0.34		2.38	201, 201	4.3	1850
Pt ₈ CO_e	b	2	0.34	2-5	2.39	193, 203	4.7	1849
Pt ₈ CO_f	b	4	0.49		2.25	195, 201	4.4	1862
Pt ₈ CO_g	b	0	0.56	3-5	2.18	194, 204	4.9	1827
Pt ₈ CO_h	t	0	0.60	5	2.12	183	2.1	2040
Pt ₈ CO_i	b	4	0.62		2.10	195, 199	5.2	1798
Pt ₈ CO_j	b	4	0.66		2.07	195, 195	5.2	1796
Pt ₈ CO_k	b	4	0.75	3-5	1.98	197, 197	4.8	1827
Pt ₈ CO_1	t	4	0.76	3	1.97	187	2.0	2029
Pt ₈ CO_m	h	4	0.77		1.96	203, 203, 215	6.2	1724
Pt ₈ CO_n	b	2	0.81		1.92	193, 205	4.5	1852
Pt ₈ CO_0	t	2	0.82	2	1.92	186	2.2	2019
Pt ₈ CO_p	h	4	0.91		1.81	203, 203, 207	6.5	1720
Pt ₈ CO_q	h	4	1.01		1.73	204, 208, 216	5.6	1757

^{*a*} Coordination of the CO molecule to the Pt₈ cluster: top (t), bridge (b), three fold hollow (h)

^b Relative energies with respect to the most stable structure

 c Δ (C-O) is the extension of C-O bond when it is coordinated to CO. The reference C-O distance is gas phase is 114.2 pm.

^d C-O vibrational frequencies are corrected by 14 cm⁻¹

Figure S1

Optimized structures of the CO adsorbed on Pt_8 cluster in gas phase. Color coding: red – O; gray – C; dark blue – Pt. Cut-off for the Pt-Pt bonds is 330 pm.

Figure S2

Optimized structure of the complex $Pt(CO)_2/Ce_{21}O_{42}$ in position e. Color coding: red – O; gray – C; light blue – Ce; dark blue – Pt.

Figure S3. Calculated C-O vibrational frequency (in cm⁻¹) for CO coordinated on mononuclear platinum species on ceria nanoparticle versus the oxidation state of the platinum atom, *n*. The solid line shows the correlation v = 2017 + 20.6 * n (RMSD = 0.90).

Figure S4. Calculated C-O vibrational frequency (in cm^{-1}) for CO coordinated on mononuclear platinum species on ceria nanoparticle versus the Bader charge (in |e|) of the platinum atom.