Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Bubble-Template Approach to Assemble Ni-Co Oxide Hollow Microspheres with Enhanced

Electrochemical Performance as Anode for Lithium Ion Batteries

Caihua Ding^a, Dong Yan^b, Yongjie Zhao^{a,*}, Yuzhen Zhao^c, Heping Zhou^c, Jingbo Li^a and

Haibo Jin^{a,*}

^a Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green

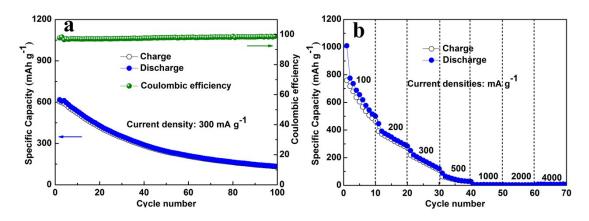
Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing,

100081, China

^b School of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China

^c State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and

Engineering, Tsinghua University, Beijing, 100084, PR China


*Corresponding Author: zhaoyjpeace@gmail.com and hbjin@bit.edu.cn

Caihua Ding and Dong Yan have the equal contribution to this paper.

Content

Fig. S1. (a) Cyclic performance of the pure NiO at a current density of 300 mA g^{-1} . (b) Rate performance of pure NiO at various current densities.

Fig. S2. Nyquist plots of Ni-Co oxide and pure NiO at as-prepared (before cycling).

Fig. S1. (a) Cyclic performance of the pure NiO at a current density of 300 mA g^{-1} . (b) Rate performance of pure NiO at various current densities.

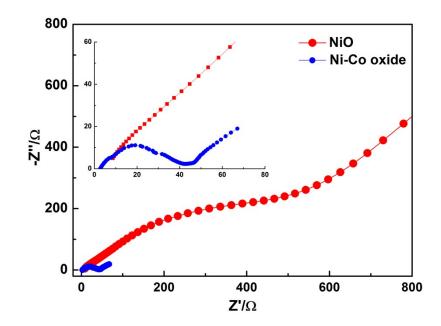


Fig. S2. Nyquist plots of Ni-Co oxide and pure NiO at as-prepared (before cycling).