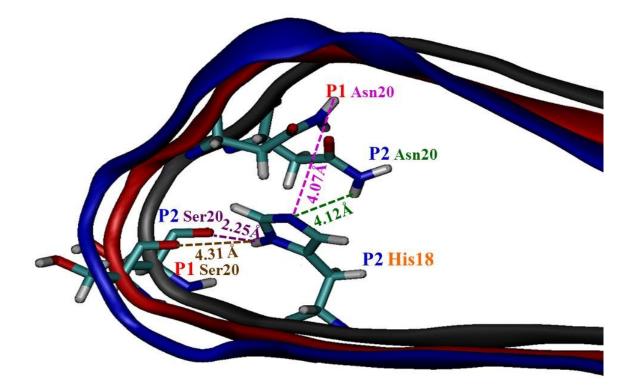
Supporting Information for

"Effect of Zn²⁺ ions on the assembly of amylin oligomers: Insight into the molecular mechanisms"


Vered Wineman-Fisher,^{1,2} and Yifat Miller^{1,2}

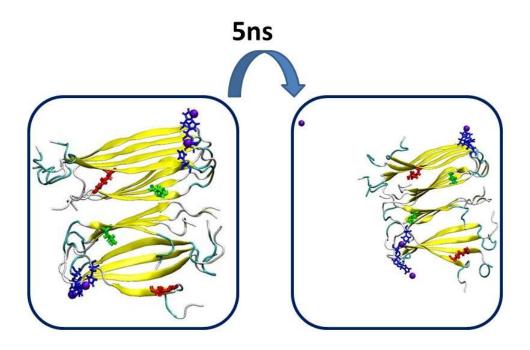
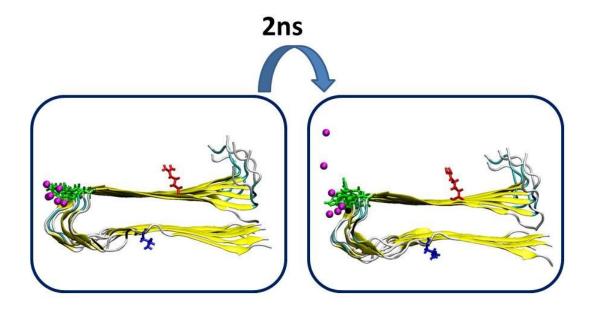
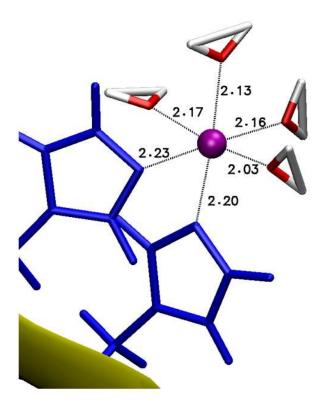
¹Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel ² Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel

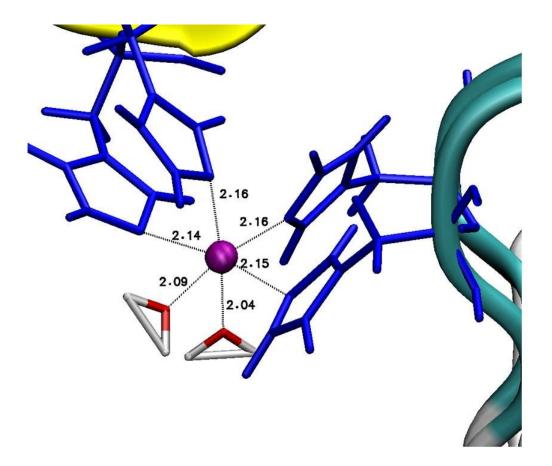
Corresponding Author:

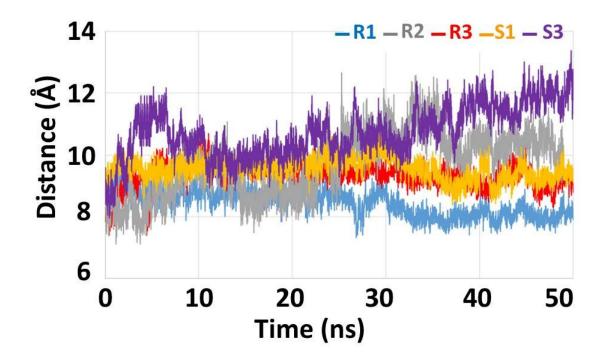
Yifat Miller

E-mail: ymiller@bgu.ac.il Fax: +972-86428709 Tel: +972-86428705

Figure S1: Illustration of the inside the core domain of model Q1 that is based on model A1. The core domain in which the His18 suppose to bind Zn^{2+} ion can not accommodate the Zn^{2+} ion, therefore in the minimization process the Zn^{2+} ions were escaped from the binding site core domain.


Figure S2: Simulations of model S2 illustrate that Zn^{2+} ions were escaped from the binding site.


Figure S3: Simulations of model R1 with Zn^{2+} :amylin ratio of 1:1 illustrate that after 2 ns the Zn^{2+} ions were escaped from the binding site.

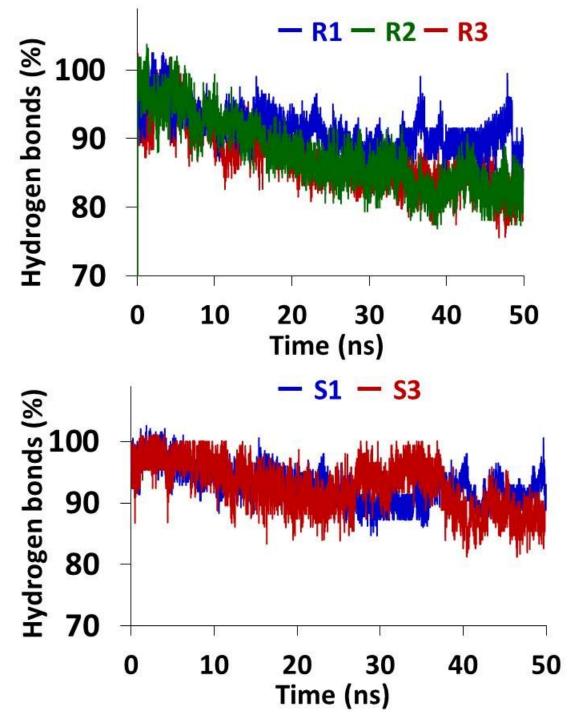

Figure S4: Illustration of one of the binding sites of Zn^{2+} ions in model R1 with the Zn^{2+} :amylin ratio of 1:2. Four water molecules complete the coordination with the Zn^{2+} ion.

Figure S5: Illustration of one of the binding sites of Zn^{2+} ions in model S3 with the Zn^{2+} :amylin ratio of 1:4. Two water molecules complete the coordination with the Zn^{2+} ion.

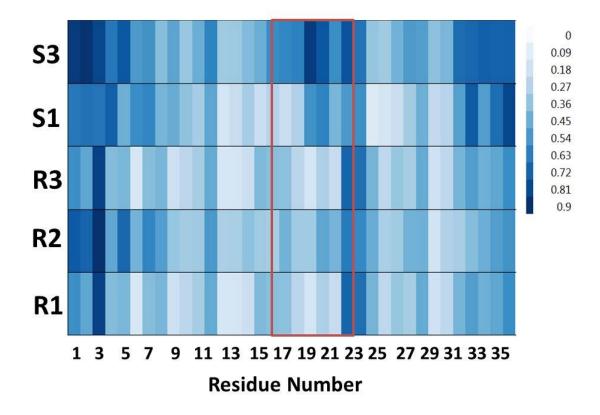

Figure S6: The averaged inter-sheet (C α backbone-backbone) distances for simulated models of Zn²⁺-amylin oligomers models R1, R2 and S1 and with Zn²⁺:amylin ratio of 1:2, and models R3 and S3 with ratio of 1:4.

Figure S7: The fraction of the number of hydrogen bonds (in percentage) between all β -strands compare to the number in the initial constructed model, for models of Zn²⁺-amylin oligomers models R1, R2 and S1 and with Zn²⁺:amylin ratio of 1:2, and models R3 and S3 with ratio of 1:4.

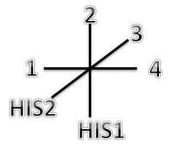

Figure S8: RMSDs of models of Zn^{2+} -amylin oligomers models R1, R2 and S1 and with Zn^{2+} :amylin ratio of 1:2, and models R3 and S3 with ratio of 1:4.

Figure S9: Average number of water molecules around each side-chain C β carbon (within 4 Å) for Zn²⁺-amylin oligomers models R1, R2 and S1 and with Zn²⁺:amylin ratio of 1:2, and models R3 and S3 with ratio of 1:4.

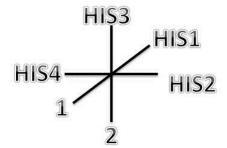

HIS1	HIS1	HIS2	Water1	Water2	Water3	Water4
HIS1		88.14	84.58		91.52	103.984
HIS2	88.14		91.80	93.71		88.77
Water1	84.58	91.80		87.81	92.29	
Water2		93.71	87.813		87.08	83.75
Water3	91.52		92.29	87.08		88.0
Water4	103.984	88.77		83.75	88.0	

Table S1: The angles (in degree) His-Zn²⁺-His, His-Zn²⁺-Water, Water-Zn²⁺-Water in the binding site of model R1 (Figure S4).

HIS1	HIS1	HIS2	HIS3	HIS4	Water1	Water2
HIS1		91.52	94.963	101.463		88.43
HIS2	91.52		96.113		81.68	88.243
HIS3	94.963	96.113		86.33	94.283	
HIS4	101.463		86.33		84.91	88.94
Water1		81.68	94.28	84.91		82.85
Water2	88.43	88.24		88.94	82.85	

Table S2: The angles (in degree) His-Zn²⁺-His, His-Zn²⁺-Water, Water-Zn²⁺-Water in the binding site of model S3 (Figure S5).

Model	Energy (kcal/mol)	Standard deviation (kcal/mol)		
M2	-6908	147		
M2d	-6850	146		
M5	-6668	151		
R1	-9125	155		
R2	-9095	165		
R3	-7722	159		
S1	-8998	217		
S3	-7550	146		

Table S3: The conformational energies (computed using the GBMV calculations) and the standard deviations.