Effect of a triplet to singlet state interaction on photofragmentation dynamics:
 Highly excited states of HBr probed by VMI and REMPI as a case study

Pavle Glodic ${ }^{1}$, Dimitris Zaouris ${ }^{1 \text { a }}$, Peter C. Samartzis ${ }^{1}$, Arnar Hafliðason ${ }^{2}$ and Ágúst Kvaran*
1. Institute of Electronic Structure and Laser, Foundation for Research and TechnologyHellas, Vassilika Vouton, 71110 Heraklion, Greece.
2. Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
a. Present address: Department of Physics and Astronomy, University College London, Gowen Street London WC1E, 6BT, UK

Supporting information

Content:
Fig. S1, Mass resolved REMPI spectra ($\mathrm{H}^{79} \mathrm{Br}^{+},{ }^{79} \mathrm{Br}^{+}, \mathrm{H}^{81} \mathrm{Br}^{+},{ }^{81} \mathrm{Br}^{+}$and H^{+}) covering spectra due to two-photon resonance excitations to the $6 \mathrm{p} \pi^{3} \Sigma^{-}\left(0^{+}, \mathrm{v}^{\prime}=0\right)\left(Q\right.$ lines and the $J^{\prime}=0$ and 2 lines for the O and S series, respectively) and $V^{1} \Sigma^{+}\left(\mathrm{v}^{\prime}=m+17\right)\left(Q\right.$ lines, $J^{\prime}=7$ and 8 only) states ($84740-84860 \mathrm{~cm}^{-1}$). Bromine atomic ($2+1$) REMPI lines are marked by asterisks (*). Lines due to the two isotopologues $\mathrm{H}^{79} \mathrm{Br}$ and $\mathrm{H}^{81} \mathrm{Br}$ in the V state spectrum are marked by broken red $(i=79)$ and blue $(i=81)$ lines respectively

Fig. S2, Rotational energy levels derived from observed REMPI rotational peaks for the $6 p \pi^{3} \Sigma^{-}\left(\mathrm{v}^{\prime}=0\right)$ (blue) and the $V^{1} \Sigma^{+}\left(\mathrm{v}^{\prime}=m+17\right)($ red $)$ states $\left(\mathrm{H}^{79} \mathrm{Br}\right)$ along with estimated potential curves (blue solid curve and red dotted curve respectively). Near-resonance interactions for $J^{\prime}=7$ and 8 are indicated by black broken lines. The potential curve for the $6 p \pi$ state is based on that of the ground ionic state ${ }^{1}$ (see Fig. caption 1b), whereas the diabatic curve for the V state is extrapolated from the V part of the adiabatic B potential (see Fig. 1b). The method of calculating the rotational energy levels is described in reference ${ }^{2}$

Fig. S1

Fig. S2

References

1. A. Banichevich, R. Klotz and S. D. Peyerimhoff, Molecular Physics, 1992, 75, 173-188.
2. Á. Logadóttir, Á. Kvaran and H. Wang, J. Chem. Phys., 2000, 112, 10811-10820.
