Supporting Information

Water Dissociation on MnO(1x1)/Ag(100)

Chris Arble^a, Xiao Tong^b, Livia Giordano^c, Anna Maria Ferrari^{d,*} and John T. Newberg^{a,*}

^a University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19716.

^b Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973.

^c Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, 20125 Milano, Italy.

^d Dipartimento di Chimica IFM, Università di Torino and NIS-Nanostructured Interfaces and Surfaces-Centre of Excellence Center, 10125 Torino, Italy

*Corresponding authors: jnewberg@udel.edu (John T. Newberg) anna.ferrari@unito.it (Anna Maria Ferrari)

Figure S1. RHK sample holder. A "hat shaped" Ag(100) single crystal is secured under a saphire washer held in with three clips. Sample temperature is monitored using a K-type thermocouple underneath the crystal.

Figure S2. LEED images of (a) clean Ag(100) and (b) MnO film on Ag(100) annealed to 700 K in vacuum.

Figure S3. STM of Ag(100) after sputtering and annealling to 700 K. Image collected at 0.96 V and 0.53 nA.

Figure S4. C1s spectra of (a) silver substrate, (b) as deposited MnO film, (c) after exposure to 9.0×10^{-3} Torr H₂O and (d) after exposure to 2.5 Torr water vapor.

Table S1: Main features of Ag-supported MnO(100)-1x1 and MnO (2x1) monolayers. ΔE_{ad} is the adhesion energy computed with respect to a relaxed monolayer with the lattice parameters of the 2D cell fixed at the Ag(100) values; ΔE_s is the strain energy that is the energy released when in the unsupported MnO film the 2D cell constraints are removed; energies are in eV/MnO unit. The antiferromagnetic (AF) arrangement has been considered (see also Figure 4). Functional and basis sets are reported as described in the manuscript. PW indicates a plane wave basis set.

	MnO(1x1)/Ag(100)		MnO(2x1)/Ag(100)	
	\mathbf{E}_{ad}	$\Delta \mathbf{E_S}$	$\Delta \mathbf{E}_{\mathbf{ad}}$	$\Delta \mathbf{E_{S}}$
PBE0/B//PBE0/A	-0.33	0.02	-0.42	0.45
HSE06/B//PBE0/A	-0.32	0.02	-0.43	0.47
B3PW91/B//PBE0/A	-0.27	0.02	-0.40	0.44
PBE/B//PBE/A	-0.59	0.02	-0.69	0.16
PBE/PW	-0.47	0.02	-0.67	0.13
$PBE+U (U_{eff} = 4$ $eV)/PW$	-0.26	0.07	-0.38	0.41

Table S2: Energetics of the MnO(1x1) and MnO(2x1) supported and unsupported monolayers. Values are in eV per MnO unit. Both ferromagnetic (FM) and antiferromagnetic (AF) arrangements have been considered (see also Figure 4 and text for details). The lattice parameters are fixed at the Ag(100) values. The FM energies have been computed on the AF geometries.

	MnO(1x1)		MnO(2x1)	
	AF	FM	AF	FM
PBE0/B//PBE0/A	0	0.08	0.42	0.59
HSE06/B//PBE0/A	0	0.07	0.42	0.58
B3PW91/B//PBE0/A	0	0.09	0.37	0.56
	(1x1)/Ag(100)		(2x1)/Ag(100)	
	AF	БМ	AF	FM
		L IAT	1 11	
PBE0/B//PBE0/A	0	0.05	0.33	0.46
PBE0/B//PBE0/A HSE06/B//PBE0/A	0 0	0.05 0.03	0.33	0.46
		F IVI		