Supporting information

Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: role of the Lewis acid sites

Zhen Guo, De Sheng Theng, Karen Yuanting Tang, Lili Zhang, Lin Huang, Armando Borgna, and Chuan Wang*

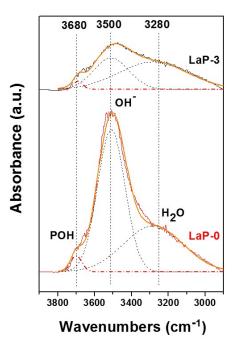


Fig. S1 DRIFTS spectra of LaP-0 and LaP-3.

Table S1 Catalytic results of the dehydration of lactic acid to acrylic acid over LaP-0 and LaP-3.

Catalysts ^a	Conversion	Selectivity (%)						Carbon
	(%)	Acrylic	Acetaldehyd	2,3-	Propanoic	Others	Fouling ^c	balance
		acid	e	pentanedion	acid	b		
				e				
LaP-0	91.1	39.8	47.1	0.1	0.4	10.6	2.1	100.1
LaP-3	67.4	49.6	21.2	0.2	3.1	20.8	2.8	97.7

a. All results are based on 5 collection of time on stream (TOS), reaction temperature: 350°C, LA concentration: 20wt.%, catalyst loading: 0.2 g; b. Others include acetic acid, ethanol, hydroxyacetone and CO; c. Fouling is estimated from the weight loss after calcination of spent catalysts.