## Supplementary Information

# Control of morphology and defect density in ZnO for improved dye sensitized solar cells

Seul Ah Kim,<sup>a‡</sup> Muhammad Awais Abbas,<sup>b‡</sup> Lanlee Lee,<sup>a</sup> Byungwuk Kang,<sup>a</sup> Hahkjoon Kim<sup>c</sup> and Jin Ho Bang<sup>abd\*</sup>

<sup>a</sup>Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
<sup>b</sup>Department of Advanced Materials Engineering Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
<sup>c</sup>Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea
<sup>d</sup>Department of Chemistry and Applied Chemistry, Hanyang University, Ansan, Republic of Korea

#### **AUTHOR INFORMATION**

<sup>‡</sup>Both authors contributed equally to this work

#### **Corresponding Author**

\* jbang@hanyang.ac.kr



**Fig. S1** Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of Zn-complex.



**Fig. S2** Cross-sectional images of nanodisk-ZnO and nanodisk-ZnO-TiCl<sub>4</sub> films, which clearly shows improved connection between ZnO particles after TiCl<sub>4</sub> treatment. (A-B) nanodisk-ZnO and (C-D) nanodisk-ZnO-TiCl<sub>4</sub>.



**Fig. S3** N<sub>2</sub> adsorption/desorption isotherms of the TiCl<sub>4</sub>-treated nanodisk-ZnO. The open symbols in the isotherms represent the adsorption curves, and the solid symbols represent the desorption curves. The inset of (B) provides the pore size distribution of nanodisk-ZnO-TiCl<sub>4</sub>.

| Table S1. Summary of BET surface area of various zinc oxides used in current work. It also show | VS |
|-------------------------------------------------------------------------------------------------|----|
| the gain in the electrode surface area as a result of TiCl4 treatment. <sup>a</sup>             |    |

| Parameter                     | Comm-ZnO | nanodisk-ZnO | nanodisk-ZnO-TiCl4 |
|-------------------------------|----------|--------------|--------------------|
| BET area $(m^2/g)$            | 34.39    | 24.75        | 23.81              |
| Avg. Pore diameter<br>(nm)    | 34.48    | 15.11        | 15.03              |
| TiO2 mass gain<br>(wt %)      |          |              | 60                 |
| Gain in Electrode<br>Area (%) |          |              | 54                 |

<sup>*a*</sup>After the TiCl<sub>4</sub> treatment, even though gravimetric surface area was decreased; however, additional TiO<sub>2</sub> was deposited on the nanodisk-ZnO surface. This increased the packing density of the electrode film and led to the overall increase in electrode area.



**Fig. S4** Photoluminescence decay of N719 dye adsorbed onto three different mesoporous films. Solid black lines in each curve shows fitted lines. Faster decay on nanodisk-ZnO-TiCl4 indicates faster electron transfer to TiCl4-treated nanodisk-ZnO as compared to other two ZnO films.

| Table S2.         Photoluminescence lifetime pa | arameters of N719  | dye used in curren | nt work on | glass slide |
|-------------------------------------------------|--------------------|--------------------|------------|-------------|
| and adsorbed onto various mesoporous fi         | ilms. <sup>a</sup> |                    |            |             |

| Sample             | <b>t</b> 1 (%) | τ2 (%)     | $\tau_{avg.}(ns)$ | kc <sup>b</sup>    |
|--------------------|----------------|------------|-------------------|--------------------|
| N719 on Glass      | 4.04 (26)      | 37.68 (74) | 28.78             |                    |
| comm-ZnO           | 2.19 (58)      | 22.40 (42) | 10.59             | $5.97 \times 10^7$ |
| nanodisk-ZnO       | 2.36 (58)      | 23.45 (42) | 11.17             | $5.48 \times 10^7$ |
| nanodisk-ZnO-TiCl4 | 0.96 (72)      | 7.63 (28)  | 2.83              | $3.19\times 10^8$  |

<sup>*a*</sup>The PL decay curves were fitted with the following equation:  $f(t) = A_1 e^{-k\tau_1} + A_2 e^{-k\tau_2}$ . <sup>*b*</sup>Calculated using the following equation:  $k_c = 1/\tau_{ZnO} - 1/\tau_{Glass}$ .



**Fig. S5** Equivalent circuit used for fitting the EIS data.  $R_S$  is the series resistance,  $R_{CE}$  and  $C_{CE}$  are the charge transfer resistance and the chemical capacitance at the counter electrode/electrolyte interface,  $R_{tr}$  (= $r_{tr}$ .L) is the transport resistance through mesoporous TiO<sub>2</sub> network,  $R_r$  (= $r_r$ .L) and  $C_{\mu}$  (= $c_{\mu}$ .L) are the recombination resistance and the chemical capacitance at the TiO<sub>2</sub>/dye/electrolyte interface.<sup>1,2</sup>



**Fig. S6** Nyquist plots of three different solar cells studied in current work. (A-B) comm-ZnO, (C-D) nanodisk-ZnO, and (E-F) nanodisk-ZnO-TiCl<sub>4</sub>. Figures (B), (D), and (F) are zoom in of the Nyquist plots on left side of the respective figures to show the linear region used to estimate the transport resistance.



**Fig. S7** (A) Chemical capacitance in equivalent conduction band position to calculate the shift in the  $V_F$  for comparison of various parameters extracted from EIS. (B) Electron diffusion coefficient and (C) small perturbation diffusion length as calculated from EIS.



**Fig. S8** (A) Open circuit voltage decay (OCVD) data of various ZnO-based DSSC studied in the current work. (B) Comparison of electron lifetimes measured by OCVD and EIS measurements.

### References

- 1. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, *Sol. Energy Mater. Sol. Cells*, 2005, **87**, 117-131.
- 2. V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, ACS Nano, 2010, 4, 5783-5790.