Atomistic Insights Into Deep Eutectic Electrolytes: The Influence of Urea On The Electrolyte Salt LiTFSI in View of Electrochemical Applications SUPPLEMENTARY MATERIAL

Volker Lesch,[†] Andreas Heuer,^{‡,§} Babak R. Rad,^{†,||} Martin Winter,^{†,||} and Jens Smiatek^{*,¶}

†Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage, Forschungszentrum Juelich, Corrensstrasse 46, 48153 Muenster, Germany

‡Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Muenster, Germany

¶Institut für Computerphysik, Universität Stuttgart, D-70569 Stuttgart, Germany §Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage, Forschungszentrum Juelich, Corrensstrasse 46, 48153 Muenster, Germany

||MEET Battery Research Centre, Institute of Physical Chemistry, University of Muenster, Corrensstr. 46, 48149 Muenster, Germany

E-mail: smiatek@icp.uni-stuttgart.de

Coordination numbers for urea and TFSI around lithium

ions

Figure 1: Coordination number of TFSI (a) and urea (b) molecules around lithium ions.

Occurrence probabilities for neighboring TFSI and urea molecules around lithium ions

Figure 2: Probability for a coordination of lithium ions by a specific number of TFSI and urea molecules in the first coordination shell.

Residence times of TFSI ions around lithium

Figure 3: Autocorrelation function to determine the residence time τ of TFSI in the first coordination shell of lithium ions with a distance criterion of r = 0.27 nm. The colors denote different urea concentrations according to U_{1:1} (red line), U_{1:3} (blue line) and U_{1:6} (black line).

Radial distribution functions

Figure 4: Center-of-mass radial distribution functions g(r) for urea around lithium (top), urea around TFSI (middle) and lithium around lithium (bottom) for different urea concentrations as denoted in the legend.

Local/bulk partition coefficient

The coordination numbers of species β and γ around lithium ions were used to calculate the local/bulk partition coefficient

$$K_p(r) = (\langle N_\beta(r) \rangle / \langle N_\gamma(r) \rangle) / (N_\beta^0 / N_\gamma^0)$$
(1)

which expresses the affinity to lithium ions. The brackets $\langle .. \rangle$ denote the mean coordination number at distance r and the superscript '0' indicates the total number of molecules in the simulation box^{1,2}.

Figure 5: Local/bulk partition coefficient $K_p(r)$ for urea (β) and TFSI ions (γ) around lithium ions.

Diffusion coefficients

Table 1: Diffusion coefficients D_i in 1×10^{-5} cm² s⁻¹ for all three species depending on the urea concentration. The late onset of diffusive motion inhibits the calculation of D_i for the $U_{1:1}$ mixture.

Species	D_i (U _{1:3})	D_i (U _{1:6})
urea	0.026	0.152
TFSI	0.007	0.067
lithium	0.010	0.072

Potential energies

Figure 6: Coulomb (Coul) and Lennard-Jones (LJ) potential energies between the different compounds for the different mixtures.

References

- Courtenay, E.; Capp, M.; Anderson, C.; Record, M. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of osmotic stress experiments in vitro. *Biochemistry* 2000, 39, 4455–4471.
- (2) Micciulla, S.; Michalowsky, J.; Schroer, M. A.; Holm, C.; von Klitzing, R.; Smiatek, J. Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study. *Phys. Chem. Chem. Phys.* **2016**, *18*, 5324–5335.