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I. PHONON DISPERSION

A. Analytic expressions for optical frequencies

The phonon frequencies at the Gamma point are related to the VFM parameters as follows
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B1g

/s = 4.6505K ′θ , (S1a)

ω2
B1u

/s = 7.5540K ′θ , (S1b)

ω2
B2g

/s = 2.2264(Kr −Krr′)− 5.4889K ′rθ + 6.7662K ′θ , (S1c)

ω2
Au
/s = 2.2264(Kr −Krr′)− 0.9383K ′rθ + 0.1977K ′θ , (S1d)

ω2
B2u

/s = 1.7735(Kr +Krr′) + 0.9383K ′rθ + 0.2482K ′θ − 7.9485Krθ + 8.9056Kθ , (S1e)

where the factor s = 8785.5 cm−2/eV converts the frequencies to have units of cm−1 if the VFM parameters are given
in eV. Moreover, the two B3g frequencies are obtained as
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where

cB3g = 2K ′r − 7.3917K ′′rθ + 14.0188K ′θ , (S2b)

dB3g = 57.5135(K ′′rθ
2 −K ′rK ′θ) + c2B3g

. (S2c)

Finally, the frequencies of the two Ag modes are given by

ω2
A1

g
/s =

1

2

(
cAg −

√
dAg

)
; ω2

A2
g
/s =

1

2

(
cAg +

√
dAg

)
, (S3a)

where

cAg = 1.7735(Kr +Krr′) + 2K ′r − 1.6496K ′rr′ − 7.9485Krθ

− 2.3391K ′rθ − 0.4363K ′′rθ + 8.9056Kθ + 1.8636K ′θ , (S3b)

dAg = (16.3805K ′rr′ − 2.2787Kr − 2.2787Krr′ − 14.7189K ′r + 10.2123Krθ − 11.4419Kθ)K
′
θ

+ (−38.8655K ′rr′ − 8.19024K ′rθ + 10.8132Kr + 10.8132Krr′ − 48.4608Krθ + 54.2957Kθ + 14.7189K ′′rθ)K
′′
rθ

+ (19.4327K ′rθ − 12.8281Kr − 12.8281Krr′ + 57.4907Krθ − 64.4129Kθ)K
′
r

+ 25.6562K ′rr′
2 − 10.8132K ′rr′K

′
rθ + 1.13935K ′rθ

2 + c2Ag
. (S3c)

Using the expressions above, the phonon frequencies can be calculated from the VFM parameters listed in the main
text (Table 1). The resulting frequencies are shown in Table ??.

∗ midtvedt@chalmers.se
† croy@pks.mpg.de

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2016



2

TABLE S1. Comparison of phonon frequencies given in cm−1

mode this work Ref. [? ] (VFM) Ref. [? ] (DFT)

A1
g 363 362.4 343.2

A2
g 468 472.6 450.5

B1g 194.5 194.9 188.5

B2g 440 440 426.4

B1
3g 227 223.4 223.8

B2
3g 438 429.1 412.7

B1u 247.9 248.4 144.7

B2u 483 463.5 458.4

Au 466.3 411 422.6

II. SOLUTION TO THE AIRY STRESS EQUATION FOR THE SUSPENDED PHOSPHORENE DRUM

In dimensionless form, the Airy stress equation for an orthotropic drum is (see Eq. (9) in the main text)

q∂4x̃χ̃+ (1/q)∂4ỹ χ̃+
(

(Ỹ /Gxy)− 2ν̃
)
∂2x̃∂

2
ỹ χ̃ = (w0/R)2

[
(∂x̃∂ỹw̃)2 − (∂2x̃w̃)(∂2ỹw̃)

]
, (S4)

where q =
√
Yx/Yy, χ̃ = (χR2)/Ỹ , and w̃ = w/w0. Inserting the Ansätze for the Airy stress function, χ̃ =

Ax̃4 +Bỹ4 +Cx̃2ỹ2 +Dx̃2 +Eỹ2 +χ0, and the deformation, w̃ = 1− (x̃2 + ỹ2) given in the main text, the Airy stress
equation reduces to

24Aq + (24/q)B + 4C
[
(Ỹ /Gxy)− 2ν̃

]
= −4(w0/R)2 . (S5)

In addition to this equation, there are four boundary conditions that need to be fulfilled for the in-plane displacements,
namely ũ(x̃ = 0, ỹ = 0) = 0, ṽ(x̃ = 0, ỹ = 0) = 0, ũ(x̃2 + ỹ2 = 1) = 0, ṽ(x̃2 + ỹ2 = 1) = 0. Using the relations between
the Airy stress function and the stresses, in combination with the stress-strain relations one obtains for the strains

εxx =
(
1− ν̃2

) [
(1/q)∂2ỹ χ̃− ν̃∂2x̃χ̃

]
,

εyy =
(
1− ν̃2

) [
q∂2x̃χ̃− ν̃∂2ỹ χ̃

]
,

εxy = −(Ỹ /(2Gxy))∂x̃∂ỹχ̃ . (S6)

The displacement fields are then obtained by integration as

ũ(x̃, ỹ) =(R/w0)2
∫ x̃

0

dx̃εxx ,

ṽ(x̃, ỹ) =(R/w0)2
∫ ỹ

0

dỹεyy . (S7)

Note that these solutions for the displacement fields immediately satisfy the boundary condition at the center of the
drum. In fact, they imply that ũ and ṽ vanish along the lines x̃ = 0 and ỹ = 0 respectively. Thus, we write ũ(x̃, ỹ) =
x̃f(x̃, ỹ) and ṽ(x̃, ỹ) = ỹg(x̃, ỹ) where f and g are second order polynomials in x̃, ỹ satisfying f(x̃2 + ỹ2 = 1) = 0
and g(x̃2 + ỹ2 = 1) = 0. This implies that the displacement fields must be given by ũ(x̃, ỹ) = ũ0x̃

(
1− x̃2 − ỹ2

)
and

ṽ(x̃, ỹ) = ṽ0x̃
(
1− x̃2 − ỹ2

)
. The coefficients A, B, C, D and E in the Airy equation and the coefficients ũ0 and ṽ0 in

the displacement fields are then obtained by inserting the Ansatz for the Airy function into Eq. (??) and matching
coefficients, while also imposing Eq. (??).

Due to the radial symmetry of the boundary conditions, the displacement fields and the strains are more conveniently
expressed in polar coordinates. The stresses on the other hand are also influenced by the orthotropic symmetry of
the underlying lattice, and are therefore better expressed in Cartesian coordinates. In polar coordinates x̃ = r cos θ
and ỹ = r sin θ with 0 < r < 1 and 0 < θ < 2π the corresponding displacement fields are ũr = ũ cos θ + ṽ sin θ,
ũθ = −ũ sin θ + ṽ cos θ. We find

ũr = r(1− r2)
Gxy(1− ν̃2)2

(
2qν̃ − 3(1 + q2)− 3(1− q2) cos 2θ

)
qỸ (ν̃2 − 9) +Gxy (2qν̃ − 3(1 + q2)) (1− ν̃2)

ũθ = r(1− r2)
3Gxy(1− ν̃2)2(q2 − 1) sin 2θ

qỸ (ν̃2 − 9) +Gxy (2qν̃ − 3(1 + q2)) (1− ν̃2)
. (S8)
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The strains are obtained from the displacements as

εrr =(w0/R)2
(
∂rũr + (1/2)(∂rw̃)2

)
=

(w0/R)2

(
2r2 + (1− 3r2)

Gxy(1− ν̃2)2
(
2qν̃ − 3(1 + q2)− 3(1− q2) cos 2θ

)
qỸ (ν̃2 − 9) +Gxy (2qν̃ − 3(1 + q2)) (1− ν̃2)

)
,

εθθ =(w0/R)2
(
∂θũθ/r + ũ/r + (1/2r2)(∂θw̃)2

)
=

(w0/R)2

(
(1− r2)

Gxy(1− ν̃2)2
(
2qν̃ − 3(1 + q2) + 3(1− q2) cos 2θ

)
qỸ (ν̃2 − 9) +Gxy (2qν̃ − 3(1 + q2)) (1− ν̃2)

)
,

εrθ =(1/2)(w0/R)2 [(∂r − 1/r) ũθ + (1/r)∂θũ+ (1/r)(∂θw̃)(∂rw̃)] =

(w0/R)2

(
(1− 2r2)

3Gxy(1− ν̃2)2
(
(1− q2) sin 2θ

)
qỸ (ν̃2 − 9) +Gxy (2qν̃ − 3(1 + q2)) (1− ν̃2)

)
. (S9)

We note that by setting q = 1 the limit of an isotropic drum is obtained. In particular, the displacements become
purely radial, the shear strain vanishes and the remaining strain components are functions of the distance from the
center of the drum only. For q 6= 1 this is no longer true.


