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Computational Details

To calculate the κ values of each SiGe alloy at 300K, equilibrium molecular dynamics (EMD) 

was employed using LAMMPS. The interatomic interactions were described using the Stillinger-

Weber potential function with parameters that were re-optimized using a force-matching method 

based on DFT calculations. At each composition studied, unit cells were first constructed with 23N 

atoms in which the Si and Ge sites were randomly distributed. The unit cell length along the <100> 

direction was determined by Vagard’s law; the lattice parameter of Si1-xGex (aSiGe) was 

approximated using linear interpolation between the Si and Ge lattice constants (optimized from 

DFT-GGA calculations), i.e, aSiGe = (1–x)aSi + xaGe, where aSi = 5.4571 Å and aGe = 5.7564 Å.  

As shown in Fig. 1 of the main text, each supercell was constructed by repeating the unit cell 

(for N < 5) in the x, y, and z directions such that the final size was commensurate with the N = 5 

case. Therefore, each Si1-xGex system for EMD calculations contained 32768 atoms. By doing so, 

the finite size effect typical in EMD calculations was mitigated and the influence of repeating unit 

cell size on  could be clearly compared. Periodic boundary conditions were applied in all three 

directions and a time step of 0.5 fs was used. 

First, each system was equilibrated in the canonical ensemble (NVT) using a Nose-Hoover 

thermostat for 5×105 steps at 300 K. Then, heat fluxes were computed using the microcanonical 

ensemble (NVE) during the following 4×106 steps (2 ns). Quantum corrections were applied using 
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a Debye temperature (TD) approximated for Si1-xGex by TD(Si1-xGex) = (1–x)TD(Si) + xTD(Ge), 

where TD(Si) = 645 K and TD(Ge) = 374 K. All reported results for each composition were obtained 

from statistics averaged over 15 independent simulations for 3 different configurations (5 

independent runs for each configuration). 

The phonon relaxation time τi is obtained by fitting the autocorrelation function of the total 

energy Ei(t) with an exponential ( ) and taking the time constant (τ) to be equal to the phonon 𝑒 ‒ 𝑡/𝜏

relaxation time. Ei(t) is calculated from
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       and  are the potential and kinetic energy of mode i, respectively. ωi is the angular 𝐴𝑖(𝑡) �̇�𝑖(𝑡)

frequency and * denotes the complex conjugate. NT is the total number of atoms in a system, mj is 

the mass of the jth atom,  is the atomic displacement from equilibrium position (at t = 0), and �⃗�𝑗(𝑡)

 is the atomic velocity at time t, and  is the polarization vector of jth atom for mode i. �⃗�𝑗(𝑡) 𝑒(𝑖,𝑗)

The eigenmodes and frequencies are obtained by direct diagonalization of the dynamical matrix, 

which was computed from finite differences of the atomic forces.  and  are obtained �⃗�𝑗(𝑡) �⃗�𝑗(𝑡)

from the atomic trajectories generated by a microcanonical MD simulation 4 ns long.  Effective 

group velocities (vg,i) were calculated from least square fit by a quadratic function to dispersion 



curves  within # Å-1 close to the Γ point. An effective mean free path of phonon mode i is ∆𝜔(𝑞)

defined by λi= vg,i×τi. The examined composition is 50% Ge and the number of atoms in this 

calculation is 4096 for all samples.

Figure S1. The phonon relaxation time(τi) and group velocity (vg,i) of Si0.5Ge0.5 (21) and Si0.5Ge0.5 
(212) as a function of frequency.



Figure S2. The phonon relaxation time(τi) and group velocity (vg,i) of Si0.5Ge0.5 (23N) from N = 1 
to 4 as a function of frequency.


