Electronic Supplementary Information (ESI)

A joint experimental and theoretical determination of the structure of discharge products in Na–SO₂ battery

Young-Kyu Han,^{a,*} Goojin Jeong,^b Keon-Joon Lee,^a Taeeun Yim,^{b,c,*} and Young-Jun Kim^{b,*}

^a Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

^b Advanced Batteries Research Center, Korea Electronics Technology Institute, Seongnam, 13509, Republic of Korea.

^c Department of Chemistry, Incheon National University, Incheon, 22012, Republic of Korea.

Procedure for a storage test of pristine electrolyte (NaAlCl₄•xSO₂)

The electrolyte (NaAlCl₄•xSO₂) was prepared by thoroughly mixing sodium chloride (NaCl, >99.9%, Alfa Aesar) with aluminum chloride (AlCl₃, 99.999%, Alfa Aesar) at a ratio of 1.1 to 1.0 in a homemade glass/Teflon vessel. The vessel was then flushed with SO₂ gas (Fluka) for two hours until the solid mixtures were fully converted into transparent liquids. In detail, 20.0 g of AlCl₃ (150.0 mol) and 8.77 g of NaCl (150.0 mol) were finely dispersed in the vessel and thereafter excess amounts of SO₂ gas were blown into the vessel controlled with pressure of 1.5 atm for two hours. After the electrolyte preparation was completed, we calculated the mass of SO₂ that participated in the formation of the electrolyte complex by weighing the vessel reactor, as shown in the following equation.

Used SO_2 mass for electrolyte preparation = Mass of vessel after reaction ($AlCl_3 + NaCl + vessel + SO_2$) – mass of vessel before reaction ($AlCl_3 + NaCl + vessel$)

It should be noted that there is unreacted gaseous SO_2 in the vessel even after the reaction was completed because excess amounts of SO_2 were used for this reaction. Therefore, we bent the electrolyte vessel each day in order to remove unreacted SO_2 remaining in the vessel and carefully monitored the change of vessel mass. After this repeated process for nine days, we observed that 2.20 mol of SO_2 was attached on the NaAlCl₄ complex.

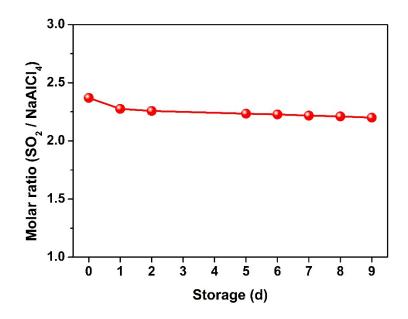


Figure S1. Storage tests for pristine electrolyte to determine coordination number of SO₂.

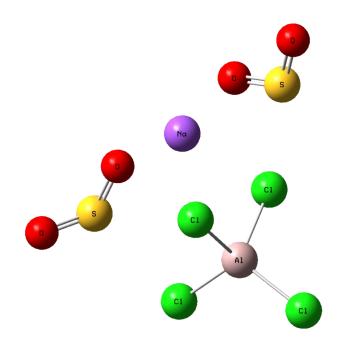


Figure S2. Optimized chemical structure of NaAlCl₄•2SO₂.