Supporting Information

Tuning the structure and mechanical property of polymer nanocomposites

by employing anisotropic nanoparticles as netpoints

Zijian Zheng^{1, 2}, Fanzhu Li^{1, 2}, Hongji Liu^{1, 2}, Jianxiang Shen⁵, Jun Liu^{1, 2, 3*}, Youping Wu^{1, 2, 3*}, Liqun Zhang^{1, 2,3,4}, Wenchuan Wang⁴

¹Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, People's Republic of China

²Beijing Engineering Research Center of Advanced Elastomers, People's Republic of China

³Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, PRC

⁴State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029 Beijing, People's Republic of China

⁵College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, P.

R. China

^{*)}Authors to whom correspondence should be addressed. Electronic addresses: <u>liujun@mail.buct.edu.cn</u> or <u>wuyp@mail.buct.edu.cn</u>

Fig. S1 The bond orientation of polymer chains as a function of the strain for (a) various temperatures and (b) various bending energy.

Fig. S2 The bond orientation of polymer chains as a function of the strain for (a) various interfacial interaction energy (b) different temperatures. We fix the reduced temperature $T^*=1.0$ when varying the interfacial interaction strength, and we fix the interfacial interaction strength ε =5.0 when changing the temperature. Note that there exist 300 polymer chains, each contains 46 beads. The mass fraction of the carbon nanotubes is equal to 8.5%.

Fig. S3 The bond orientation of polymer chains as a function of the strain for (a) various temperatures and (b) various bending energy.

Fig. S4 The bond orientation of polymer chains as a function of the strain for (a) various interfacial interaction energy and (b) different temperature. We fix the reduced temperature $T^*=1.0$ when varying the interfacial interaction strength, and we fix the interfacial interaction strength $\varepsilon=5.0$ when changing the temperature.