Electronic Supplementary Information (ESI)

Park et al.

Variation of Excited-State Dynamics in Trifluoromethyl Functionalized C₆₀ Fullerenes

Jaehong Park^{a,†}, Jessica J. Ramirez^{a,b,†}, Tyler T. Clikeman^{a,c}, Bryon W. Larson^{a,c}, Olga V. Boltalina^c, Steven H. Strauss^c, and Garry Rumbles^{a,d,*}

^aChemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

^bDepartment of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States

^cDepartment of Chemistry, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, United States

^dDepartment of Chemistry and Biochemistry, and Renewable and Sustainable Energy Institute,

University of Colorado at Boulder, Boulder, Colorado 80309, United States

[†]These authors have contributed equally.

*address correspondence to: Dr. Garry Rumbles (garry.rumbles@nrel.gov)

Fig. S1 Gaussian deconvolution fitting for ground-state electronic absorption spectra of a) **C60/4-1** and b) **C60/10-1** measured in toluene. The FWHM noted in the figure shows the FWHM results for the lowest-energy absorption peak.

Fig. S2 Photoluminescence excitation spectra of **C60/4-1** and **C60/6-2** in toluene. (a,c) Photoluminescence excitation spectra of **C60/4-1** and **C60/6-2** (blue, right y-axis), monitored at the emission wavelengths noted, are overlaid with electronic absorption spectra (black, left y-axis). (b,d) Photoluminescence excitation spectra of **C60/4-1** and **C60/6-2** in toluene monitored at the multiple emission wavelengths are normalized.

Fig. S3 Representative femtosecond pump/probe transient absorption spectra of a) $PC_{61}BM$ and b) bis- $PC_{61}BM$ in toluene obtained at the time delays noted. Experimental conditions: $\lambda_{ex} = 400$ nm, pulse energy = 300 nJ/pulse, room temperature.

Fig. S4 Representative femtosecond pump-probe transient absorption spectra of C60/10-1 in toluene, obtained at the time delays noted. Experimental conditions: $\lambda_{ex} = 400$ nm, pulse energy = 450 nJ/pulse, room temperature.

Fig. S5 Exponential fitting results of the transient decay signals for a) C60/4-1, b) C60/6-2, c) C60/10-1. Experimental conditions: $\lambda_{pr} = a$) 902 nm, b) 935 nm, and c) 1001 nm; $\lambda_{ex} = a$,b) 400 nm and c) 550 nm, pulse energy = 300 nJ/pulse, room temperature.

Fig. S6 Single-exponential fitting results of the transient signal rise for a) C60/4-1 and b) C60/6-2 using the method described earlier to determine the rise time constant of the $T_1 \rightarrow T_n$ transition (see the earlier section for the method). Experimental conditions: $\lambda_{ex} = 400$ nm, pulse energy = 300 nJ/pulse, room temperature.

Fig. S7 Comparative femtosecond pump-probe transient absorption spectrum (solid black) of C60/10-1 in toluene obtained at the time delay noted. Inversed electronic absorption spectrum (dashed blue) of C60/10-1 in toluene is displayed for comparison. Experimental conditions: $\lambda_{ex} =$ 400 nm, pulse energy = 300 nJ/pulse, room temperature.

Fig. S8 Exponential fitting results of the transient decay signals for a) C60/4-1 and b) C60/6-2, dispersed in a polystyrene matrix. Experimental conditions: $\lambda_{pr} = a$) 901 nm and b) 941 nm; $\lambda_{ex} = 400$ nm, pulse energy = 500 nJ/pulse, room temperature.