Supporting Information for The Methylsulfinyl Radical CH₃SO, Characterized Using High-Level Ab Initio Methods

Marissa L. Estep and Henry F. Schaefer III*

Center for Computational Quantum Chemistry University of Georgia, Athens, GA 30602

E-mail: ccq@uga.edu

All states considered in the present work were doublet states optimized in C_s symmetry.

CH₃SO Ground Electronic State $(\tilde{X} {}^{2}A'')$

Occupation numbers:

	A''	A'
α	13	4
β	13	3

^{*}To whom correspondence should be addressed

Minimum-Energy Structure (abbreviated GS)

Software:	CFc	OUR 1.0		
Theory:	CCS	SD(T)/ANO1		
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	1.0F	E-9		
Equilibrium Geometry (Å):				
	Η	-2.2591906630	0.3561031197	-0.0000000000
	С	-1.4602099596	-0.3875247704	-0.0000000000
	\mathbf{S}	0.1231740905	0.4885941747	-0.0000000000
	Ο	1.1835752818	-0.5811629339	0.0000000000
	Η	-1.5230460854	-1.0092567076	0.8931384867
	Η	-1.5230460854	-1.0092567076	-0.8931384867
Frequencies (cm^{-1}) :				
	139	9.2032		
	33	1.0387		
	685	5.8069		
	890	0.2235		
	940	5.6529		
	108	83.8226		
	132	24.6757		
	14^{-1}	49.1373		
	140	53.4529		
	30_{-}	41.1660		
	31_{-}	45.7567		
	314	48.8905		
ZPVE:	26.2	$317 \text{ kcal mol}^{-1}$		
SCF Convergence:	1.0E	E-10		
CC Convergence:	1.0E-10			
UHF Reference energy	-512.043458240531 En			
Final energy	-512.679538426120 Ea			
$\langle S^2 \rangle$	0.77	6		
Ť1	0.03	3		
Τ2	0.02			
Gradient	Ana	lytic		

Software:	CFOUR 1.0			
Theory:	CCSD(T)/ANO2			
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	1.0E-9			
Equilibrium Geometry (Å):				
1 0 ()	Н -2.2509697198 0.3613035509 -0.000000000			
	C -1.4559420392 -0.3851022499 -0.0000000000			
	S 0.1223153099 0.4847998944 -0.0000000000			
	O 1.1811859407 -0.5761743588 0.0000000000			
	Н -1.5199830223 -1.0056807712 0.8927955110			
	Н -1.5199830223 -1.0056807712 -0.8927955110			
Frequencies (cm^{-1}) :				
	142.4783			
	334.1565			
	695.0646			
	889.7511			
	949.8553			
	1095.3919			
	1327.1385			
	1451.5482			
	1466.0564			
	3041.9176			
	3146.9911			
	3148.9728			
ZPVE:	$25.2881 \text{ kcal mol}^{-1}$			
SCF Convergence:	1.0E-10			
CC Convergence:	1.0E-10			
UHF Reference energy	-512.048095598701 E _b			
Final energy	-512.719438774341 E _h			
$\langle S^2 \rangle$	0.787			
Ť1	0.032			
T2	0.02			
Gradient	Analytic			

Software:	Psi4
Theory:	BUUD(1)/ANOI
Charge:	0
Multiplicity:	
Geometry Convergence:	RMS Force 1.0E-0
Equilibrium Geometry (A):	
	H -2.2594566935 0.3558335612 0.000000000
	C -1.4603694998 -0.3878107179 0.0000000000
	S 0.1228335457 0.4891309447 0.0000000000
	O 1.1844319104 -0.5819680454 0.000000000
	Н -1.5233592211 -1.0095450019 0.8932064012
	Н -1.5233592211 -1.0095450019 -0.8932064012
Frequencies (cm^{-1}) :	
	138.943
	330.339
	685.228
	890.537
	946.447
	1068.615
	1324.281
	1448.792
	1463.173
	3040.193
	3144.860
	3148.136
ZPVE:	$25.2027 \text{ kcal mol}^{-1}$
Final energy	$-512.6800499 \ E_{h}$
Gradient	Numeric

Rotational transition state (abbreviated TS)

Software:	CF	our 1.0		
Theory:	CCSD(T)/ANO1			
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	1.0E	E-9		
Equilibrium Geometry (Å):				
1	\mathbf{C}	-1.4693671390	0.3853395912	0.0000000000
	Š	0.1258648563	-0.4898561090	0.0000000000
	0	1.1853767123	0.5835494121	0.0000000000
	Н	-1.2343313229	1.4494445999	0.0000000000
	Н	-2.0379349717	0.1205712899	-0.8920704853
	Н	-2.0379349717	0.1205712899	0.8920704853
Frequencies (cm^{-1}) :				
	14	2.7966 <i>i</i>		
	35^{4}	4.6870		
	68	5.5770		
	88	6.6665		
	92	5.9689		
	10'	78.4911		
	13	16.6356		
	14	52.5510		
	14	64.0369		
	304	42.6275		
	31_{-}	41.5675		
	31	59.7328		
ZPVE:	25.0	$310 \text{ kcal mol}^{-1}$		
SCF Convergence:	1.0F	E-10		
CC Convergence:	$1.0\mathrm{F}$	E-10		
UHF Reference energy	-512	2.618840637054 H	$E_{\mathbf{h}}$	
Final energy	-512	2.677886444682 H	$\Xi_{\mathbf{h}}$	
$\langle S^2 \rangle$	0.78	5		
T1	0.03	3		
Τ2	0.03	}		
Gradient	Ana	lytic		

Software:	CFO	DUR 1.0		
Theory: Charge:	CCSD(T)/ANO2			
Multiplicity:	0			
Freque Core:	Δ ON			
Comptry Convergence		0.7		
Equilibrium Coometry $(Å)$:	1.01	9		
Equinorium Geometry (A).	С	1 4647012058	0 2828027021	0.000000000
	C S	-1.4047912038 0.1251703058	0.3828937921	0.0000000000
	0	1 1824656024	-0.4802751150	0.0000000000
	U Ц	1.1624030024 1.9334134703	1.4468250345	0.0000000000
	и П	-1.2334134703	1.4408209040 0.1160617102	0.00000000000
	и П	-2.0315186500	0.1100017102 0.1160617102	-0.8914816009
Frequencies	11	-2.0313180300	0.1100017102	0.0914010009
Frequencies.	1//	1 7/31		
	25'	7.0137		
	- 60 60	5 300/		
	880) 1443		
	000) 6089		
	923 109	80.8034		
	13	20 9359 20 9359		
	1/1	55 0008		
	146	36 797 <i>4</i>		
	304	13 4856		
	314	12 3001		
	316	50 4886		
	010	0.1000		
ZPVE:	25.0	$895 \text{ kcal mol}^{-1}$		
SCF Convergence:	1.0E	E-10		
CC Convergence:	1.0E	E-10		
UHF Reference energy	-512	2.046146830428 E	$E_{\mathbf{h}}$	
Final energy	-512	2.717729459839 E	$E_{\mathbf{h}}$	
$\langle S^2 \rangle$	0.78	7		
T1	0.03	2		
Τ2	0.02	1		
Gradient	Ana	lytic		

$\mathbf{CH}_{3}\mathbf{SO}$ ($\tilde{A}^{2}A'$)

Occupation numbers:

	A''	A'
α	13	4
β	12	4

Minimum-energy structure (abbreviated XS)

Software:	CFc	OUR 1.0		
Theory:	CCSD(T)/ANO1			
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	1.0F	2-9		
Equilibrium Geometry (Å):				
	Н	-2.2221601568	0.1737208367	-0.0000000000
	С	-1.3676909325	-0.5039113213	-0.0000000000
	\mathbf{S}	0.0841391191	0.5896686273	-0.0000000000
	Ο	1.1711325837	-0.6707228759	0.0000000000
	Н	-1.3744586861	-1.1177119764	0.8987375735
	Н	-1.3744586861	-1.1177119764	-0.8987375735
Frequencies (cm^{-1}) :				
	20!	5.2934		
	253	3.0606		
	685	2.4609		
	723	5.0451		
	95'	7.2973		
	978	8.9611		
	13	30.3587		
	14_{-}	45.0348		
	148	85.8584		
	30!	52.8142		
	31!	56.1938		
	310	51.4989		
ZPVE:	24.9	$215 \text{ kcal mol}^{-1}$		
SCF Convergence:	1.0E	E-10		
CC Convergence:	1.0E-10			
UHF Reference energy	-511.998265754416 En			
Final energy	-512	2.611374451606 H	$\Xi_{\rm h}$	
$\langle S^2 \rangle$	0.763			
Ť1	0.03	1		
Τ2	0.02	1		
Gradient	Ana	lytic		

Software:	CFG	OUR 1.0		
Theory:	CCS	SD(T)/ANO2		
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	1.0E	2-9		
Equilibrium Geometry (Å):				
	Η	-2.2144127479	0.1895280279	-0.0000000000
	\mathbf{C}	-1.3678704294	-0.4965783375	-0.0000000000
	\mathbf{S}	0.0878554674	0.5849046086	-0.0000000000
	Ο	1.1638318427	-0.6688467415	0.0000000000
	Η	-1.3782781817	-1.1085931940	0.8986136032
	Н	-1.3782781817	-1.1085931940	-0.8986136032
Frequencies (cm^{-1}) :				
	208	8.7370		
	252	2.9643		
	683	3.1387		
	734	1.1697		
	957	7.8931		
	980	0.0153		
	133	30.1197		
	144	47.4180		
	148	88.7834		
	305	52.9625		
	315	57.4615		
	316	54.1043		
ZPVE:	24.9	$571 \text{ kcal mol}^{-1}$		
SCF Convergence:	1.0E	2-10		
CC Convergence:	1.0E-10			
UHF Reference energy	-512.001816668576 E _h			
Final energy	-512	.649312382801 E	$E_{\mathbf{h}}$	
$\langle S^2 \rangle$	0.763			
T1	0.03	3		
Τ2	0.03			
Gradient	Ana	lytic		

Software: Theory:	Psi4 BCC	CD(T)/ANO1		
Charge:	0			
Multiplicity:	2			
Frozen Core:	ON			
Geometry Convergence:	RMS	S Force 1.0E-6		
Equilibrium Geometry (Å):				
	Η	-2.222342124016	0.174313836993	0.0000000000000
	С	-1.368422526616	-0.504079381007	0.0000000000000
	\mathbf{S}	0.084378490184	0.589254071593	0.0000000000000
	Ο	1.171279318284	-0.669795298707	0.0000000000000
	Η	-1.374973502616	-1.117793070507	0.898833577500
	Η	-1.374973502616	-1.117793070507	-0.898833577500
Frequencies (cm^{-1}) :				
	205	5.3281		
	252	2.1836		
	680).8362		
	725	5.8256		
	956	5.3662		
	978	8.5290		
	132	29.2747		
	144	44.3636		
	148	85.4765		
	305	51.1885		
	315	55.9744		
	316	51.3445		
ZPVE:	24.9	$127 \text{ kcal mol}^{-1}$		
Final energy	-512	.719438774341 E _b		
Gradient	Nun	neric		

State	GS	XS	TS
Frozen Core	-512.666892057105	-512.597077904741	-512.665097275290
All-Electron	-513.106058947981	-513.036081301753	-513.104253347319
MVD1	-1.14331055382883	-1.14353012096674	-1.14331840488828
MVD2	-0.03879361835091	-0.03879607869464	-0.03879371581377
DBOC	+0.0103944588	+0.0103798740	+0.0103910206

Table 1: Energy values (Hartree) used for focal point analysis corrections

Table 2: ZPVE values (kcal mol^{-1}) used for focal point analysis corrections

State	GS	XS	TS
Harmonic ZPVE	25.2317	24.9216	25.0895
Anharmonic ZPVE	-0.3451	-0.3451	—
Brueckner ZPVE	-0.0290	-0.0088	—
Total ZPVE	24.8576	24.5677	25.0895

Descriptions [tight d functions are used only for sulfur in cc-pCV(T+d)Z and cc-pV(T+d)Z]:

- \bullet Harmonic ZPVE zero-point vibrational energy for the CCSD(T)/ANO2 harmonic frequencies
- Anharmonic ZPVE CCSD(T)/ANO1 VPT2 anharmonic correction to the ZPVE
- Brueckner ZPVE difference between the BCCD(T)/ANO1 harmonic ZPVE and the CCSD(T)/ANO1 harmonic ZPVE
- Frozen Core CCSD(T)/cc-pCV(T+d)Z energy with core electrons frozen
- All-Electron CCSD(T)/cc-pCV(T+d)Z energy with no electrons frozen
- MVD1 CCSD/cc-pV(T+d)Z mass-velocity relativistic correction with one-electron Darwin terms
- MVD2 CCSD/cc-pV(T+d)Z relativistic correction including two-electron Darwin terms; this must be added to MVD1 number to obtain the total MVD2 correction
- DBOC HF/cc-pV(T+d)Z diagonal Born-Oppenheimer correction

Table 3: Corrections for GS-XS focal point analysis, kcal mol^{-1}

Core:	0.1026
Relativistic:	-0.1393
ZPVE:	-0.2999
DBOC:	-0.0092

Core:	0.0068
Relativistic:	-0.0050
ZPVE:	-0.1422
DBOC:	-0.0022

Energy Values for FPA

Table 9. Electronic ground state energy values for focal point approach (fractice)	Table 5:	Electronic	ground	state	energy	values	for	focal	point	approach	(Hartree)
--	----------	------------	--------	-------	--------	--------	-----	-------	------------------------	----------	-----------

	Basis			
Theory	cc-pV(D+d)Z	cc-pV(T+d)Z	cc-pV(Q+d)Z	cc-pV(5+d)Z
UHF	-511.9687350	-512.0340500	-512.0478183	-512.0512207
MP2	-512.4128803	-512.6030323	-512.6620159	-512.6842617
CCSD	-512.4495456	-512.6337504	-512.6864678	-512.7036359
$\operatorname{CCSD}(T)$	-512.4640947	-512.6597788	-512.7159919	-512.7344252
CCSDT	-512.4651670	-512.6607039		
CCSDT(Q)	-512.4667102	-512.6624277		

Table 6: Rotational transition state on electronic ground state energy values for focal point approach (Hartree)

	Basis			
Theory	cc-pV(D+d)Z	cc-pV(T+d)Z	cc-pV(Q+d)Z	cc-pV(5+d)Z
UHF	-511.9671655	-512.0321108	-512.0458040	-512.0492043
MP2	-512.4112259	-512.6008681	-512.6598030	-512.6820525
CCSD	-512.4481154	-512.6318921	-512.6845768	-512.7017501
$\operatorname{CCSD}(T)$	-512.4627131	-512.6579651	-512.7141621	-512.7326064
CCSDT	-512.4637905	-512.6588974		
CCSDT(Q)	-512.4653406			

	Basis			
Theory	cc-pV(D+d)Z	cc-pV(T+d)Z	cc-pV(Q+d)Z	cc-pV(5+d)Z
UHF	-511.9300131	-511.9877195	-512.0006739	-512.0038235
MP2	-512.3458547	-512.5248398	-512.5816924	-512.6030895
CCSD	-512.3906399	-512.5667778	-512.6179486	-512.6343849
$\operatorname{CCSD}(T)$	-512.4033016	-512.5903783	-512.6449429	-512.6626007
CCSDT	-512.4044801	-512.5917619		
CCSDT(Q)	-512.4055911	-512.5931238		

Table 7: Electronic excited state energy values for focal point approach (Hartree)

Table 8: methylsulfinyl radical \mathcal{T}_1 and \mathcal{T}_2 amplitudes for states under study.

	Basis	Ground State	Excited State	Transition State
\mathcal{T}_1	ANO1	0.033	0.031	0.033
	ANO2	0.032	0.033	0.032
$\max t_{ij}$	ANO1	0.02	0.03	0.03
-	ANO2	0.02	0.03	0.02

Table 9: Transition properties for electronic transitions $\tilde{X}^2 A'' \leftarrow \tilde{A}^2 A'$ and $\tilde{A}^2 A' \leftarrow \tilde{X}^2 A''$. The former transition is relevant to fluorescence, while the latter can be used to study absorption processes. Notation follows that of Ref. 19:

	$\tilde{X}^2 A''$	$\tilde{A}^{2}A'$
	Equilibrium	Equilibrium
$\tilde{\nu}_{ ilde{A}}$	$18872 \ {\rm cm}^{-1}$	11299 cm^{-1}
$ \langle \tilde{X} \hat{\mu}_z \tilde{A} \rangle $	0.098 Debye	0.058 Debye
$f_{ ilde{A}}$	5.5×10^{-4}	1.1×10^{-4}

Vertical excitation energy: $\tilde{\nu}_{\tilde{A}} = \frac{\omega_{\tilde{A}}}{2\pi c}$ Transition dipole moment: $|\langle \tilde{X} | \hat{\mu}_z | \tilde{A} \rangle| \equiv \sqrt{\langle \tilde{X} | \hat{\mu}_z | \tilde{A} \rangle \langle \tilde{A} | \hat{\mu}_z | \tilde{X} \rangle}$ Oscillator strength: $f_{\tilde{A}} = \frac{2}{3} \frac{m_e}{e^2 \hbar} \omega_{\tilde{A}} |\langle \tilde{X} | \hat{\mu} | \tilde{A} \rangle|^2$ Table 10: Ground electronic state spin densities calculated using Mulliken population analysis for the CCSD(T)/ANO2 method with a UHF reference. The final two atoms listed are the equivalent hydrogens. A spin density of 0.58099757 resides on the sulfur, with a spin density of 0.40894725 on the oxygen. The remaining atoms contribute only 0.01005518 to the spin density.

Z-matrix center	Population
Н	-0.00030509
\mathbf{C}	-0.01374331
S	0.58099757
Ο	0.40894725
Η	0.01205179
Н	0.01205179

Truncated output of PyVPT2, a program written in

Python by Jay Agarwal

Ground State

Anharmonic Script, Version 4.

J. Agarwal

```
12 normal modes found
12 modes defined for analysis by user
50.0 cm-1 cutoff for delta between two fundamentals
80.0 cm-1 cutoff for minimum phi value
30.0 bound for large Xrr
100.0 bound for large Xrs
0 Xrr value(s) are being set to zero
0 Xrs value(s) are being set to zero
```

---- Diagnostics------

O additional Fermi resonance(s) has been defined by user

	Frequer	ncies(cm-1)		Intensities	Intensities(km mol-1)		
	Harmonic	Correction	Anharmonic	Harm.	Anharm.		
1	139.2032	-13.6538	125.5493	0.4	0.0		
2	331.0387	1.1341	332.1728	7.02	0.0		
3	685.8069	-16.145	669.6618	12.09	0.0		
4	890.2235	-16.986	873.2374	1.32	0.0		
5	946.6529	-22.1801	924.4728	9.82	0.0		
6	1083.8226	-15.8421	1067.9805	39.19	0.0		
7	1324.6757	-33.6579	1291.0178	0.67	0.0		
8	1449.1373	-41.5971	1407.5402	8.37	0.0		
9	1463.4529	-40.531	1422.9218	6.73	0.0		
10	3041.166	-118.21	2922.956	3.6	0.0		
11	3145.7567	-147.9725	2997.7841	3.72	0.0		
12	3148.8905	-150.562	2998.3285	1.89	0.0		

TABLE 1: HARMONIC AND ANHARMONIC FREQUENCIES AND INTENSITIES

Harmonic ZPVE: 8824.9134 cm-1; 25.2317 kcal/mol Anharmonic ZPVE: 8702.8915 cm-1; 24.8828 kcal/mol

 $G_0 = 1.6502 \text{ cm} - 1$

E_i w_i/2 = 8824.9134 cm-1

E_i>=j x_ij/4 = -123.672 cm-1

Anharmonic ZPVE (resonance-free): 8702.6041 cm-1; 24.882 kcal/mol

Quadratic: 8824.9134 cm-1 Cubic: -330.9051 cm-1 Quartic: 204.8154 cm-1 Z_kinetic: 3.7805 cm-1 Have a nice day.

Excited State

Anharmonic Script, Version 4.

J. Agarwal

----Diagnostics-----12 normal modes found
12 modes defined for analysis by user
50.0 cm-1 cutoff for delta between two fundamentals
80.0 cm-1 cutoff for minimum phi value
30.0 bound for large Xrr
100.0 bound for large Xrs
0 Xrr value(s) are being set to zero
0 Xrs value(s) are being set to zero
0 additional Fermi resonance(s) has been defined by user

TABLE 1: HARMONIC AND ANHARMONIC FREQUENCIES AND INTENSITIES

	Frequence	cies(cm-1)	Intensities(km mol-1)		
	Harmonic Correction		Anharmonic	Harm.	Anharm.

1	205.2934	-7.6999	197.5935	0.03	0.0
2	253.0606	-0.832	252.2286	5.43	0.0
3	682.4609	-19.2216	663.2392	4.03	0.0
4	725.0451	-10.1889	714.8562	1.05	0.0
5	957.2973	-16.7404	940.5569	6.95	0.0
6	978.9611	-17.4755	961.4856	5.14	0.0
7	1330.3587	-35.6941	1294.6646	6.55	0.0
8	1445.0348	-37.4528	1407.582	6.95	0.0
9	1485.8584	-42.1795	1443.6789	9.79	0.0
10	3051.8142	-116.295	2935.5191	11.03	0.0
11	3156.1938	-148.0882	3008.1056	3.87	0.0
12	3161.4989	-151.3441	3010.1547	2.45	0.0

Harmonic ZPVE: 8716.4386 cm-1; 24.9216 kcal/mol

Anharmonic ZPVE: 8595.7293 cm-1; 24.5764 kcal/mol

 $G_0 = 0.9759 \text{ cm}-1$

E_i w_i/2 = 8716.4386 cm-1

E_i>=j x_ij/4 = -121.6852 cm-1

Anharmonic ZPVE (resonance-free): 8596.7778 cm-1; 24.5794 kcal/mol

Quadratic: 8716.4386 cm-1

Cubic: -192.7418 cm-1

Quartic: 71.0916 cm-1

Z_kinetic: 1.9894 cm-1

Have a nice day.