1

Supplementary Information for:

A soft x-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals

Vedran Jovic*,^{a,b} Alexander J. E. Rettie,^c Vijay R. Singh,^d Jianshi Zhou,^e Bethany Lamoureux,^d

Charles B. Mullins, c,e Hendrik Bluhm, Jude Laverock, d,g Kevin E. Smith. a,b,d

^a School of Chemical Sciences and Centre for Green Chemical Sciences, The University of

Auckland, Auckland 1142, New Zealand.

^b The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of

Wellington, Wellington 6140, New Zealand.

[°] McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.

^d Department of Physics, Boston University, Boston, MA 02215, USA.

^e Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA.

^f Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

^g School of Physics, H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, United Kingdom.

Supplementary Figure 1. (a) XPS survey spectra for the 0.3 % W:BiVO₄ single crystal before (black) and after (red) cleaning at 300 °C in a 1×10^{-6} Torr oxygen atmosphere. The inset shows an expanded view of the C 1s region before and after annealing. (b) The O1s XPS spectrum is dominated by an intense peak at 530.5 eV due to lattice oxygen in the BiVO₄ crystalline array. The absence of high binding energy hydroxyl shoulder features at ~532eV further demonstrates that a clean surface was obtained following annealing.

Supplementary Figure 2. Valence band PES for 0.3% W:BiVO₄ and 0.6% Mo:BiVO₄, collected using an incident photon energy (hv) of 275 eV.

Supplementary Figure 3. Mo $M_{3,2}$ XAS spectra for 0.6% Mo:BiVO₄ recorded in the TEY and TFY modes.

Supplementary Figure 4. (a) V $L_{3/2}$ XAS TFY spectra for 0.6% Mo:BiVO₄ recorded with incident photon polarizations parallel (blue) to the *c*-axis and parallel (red) to the *ab*-plane. (b) Corresponding O *K*-edge XAS TFY spectra for the 0.6% Mo:BiVO₄ single crystal recorded with incident photon polarizations parallel (blue) to the *c*-axis and parallel (red) to the *ab*-plane.

Supplementary Figure 5. (a) Schematic diagram of the BiVO₄ crystal structure showing the BiO₈ (purple) and VO₄ (subunits). The arrangement of V sites in the BiVO₄ structure which results in shorter 'Next-Nearest-Neighbor' (NNN) hops in the *ab*-plane relative to NNN hops along the *c*-axis – as depicted in Ref 8 by Rettie *et al*.

Supplementary Figure 6. O *K*-edge resonant X-ray emission spectra for 0.6% Mo:BiVO₄. The spectra were recorded following irradiation with incident photon energies of 534.3 eV, 537.3 eV, 539.5 eV and >550 eV.