Supporting Information

Theoretical Investigation of the Singlet-Triplet Splittings for Carbazole-Based Thermally Activated Delayed Fluorescence Emitter

Ke Liang,^a Caijun Zheng,^{*b,c} Kai Wang,^{a,c} Wei Liu,^{a,c} Zhenyu Guo,^a Youyong Li,^{*a} Xiaohong Zhang.^{*a}

^aInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory

for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou,

Jiangsu, 215123, P.R. China,

E-mail: xiaohong_zhang@suda.edu.cn, yyli@suda.edu.cn

^bSchool of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC) Chengdu, 610054, P.R. China,

E-mail: zhengcaijun@uestc.edu.cn

^cNano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Contents

Table S1. Calculated $E_{VA}(S_1)$ and $E_{VA}(T_1)$ using various XC functionals.

Figure S1. Dependence of $E_{VA}(S_1)$ and $E_{VA}(T_1)$ of the compounds investigated on the HF% in TD-DFT functionals.

Table S2. CI description of S_1 transition by B3LYP/6-31G* and the amount of charge transfer.

Table S3. Calculated $E_{00}({}^{3}LE)$ of the Cz-based compounds using OHF.

Table S4. Calculated $E_{00}(S_1)$ and $E_{00}(T_1)$ using various XC functionals based on the optimized excited states.

Table S5. Calculated relaxation energies (λ) using various XC functionals.

Figure S2. HOMO and LUMO of the S_1 state calculated at the B3LYP/6-31G* level.

Figure S3. Hole-particle pairs of natural transition orbitals (NTO) of the T₁ state.

OHF method

OHF is determined by the relation OHF=42q. q is the CT amount which simplified in equation (1) below. $\Sigma_i a_i=1$, $\Sigma_i b_i=1$, and $q = q_+ = q_-$, where the index i represents the number of fragments; a_i and b_i are the contribution percentages of different molecular fragments in HOMO and LUMO, respectively. $E_{00}(S_1)$ is expressed by equation (2), in which 0.24 eV consists of two parts: Stokes-shift energy loss (0.09 eV) and vibrational energy level difference between the vertical transition (0.15 eV). In equation (3), $C = E_{VA}(S_1, OHF)/E_{VA}(S_1, B3LYP)$ where $E_{VA}(S_1, OHF)$ is the singlet vertical excitation energy from the E_{VA} and HF% curves according to OHF=42q, and $E_{VA}(S_1, B3LYP)$ is the singlet vertical excitation energy calculated by B3LYP functional. In equation (4), 0.09 eV is the Stokes-shift energy loss and $E_{00}(^3LE)$ is the average value calculated by BMK, M06-2X and M06-HF where C is 1.10, 1.18 and 1.30, respectively.

$$q_{+} = e \Sigma_{i} |a_{i} - b_{i}|, a_{i} - b_{i} > 0; q_{-} = e \Sigma_{i} |a_{i} - b_{i}|, a_{i} - b_{i} < 0$$
(1)

$$E_{00}(S_1) = E_{VA}(S_1, OHF) - 0.24$$
⁽²⁾

$$E_{00}({}^{3}CT) = E_{00}(S_{1}) - E_{VA}(S_{1}, OHF) + C \times E_{VA}(T_{1}, B3LYP),$$
(3)

$$E_{00}(^{3}LE) = E_{\rm VA}(T_{1})/{\rm C} - 0.09 \tag{4}$$

Functional	ΤΤΟ		AQ1		AQ2		DMD		MID	
	$E_{\rm VA}(S_1)$	$E_{\rm VA}(T_1)$								
BLYP	2.327	2.181	1.568	1.414	1.558	1.377	2.226	2.042	2.145	1.958
MPWLYP1M	2.506	2.334	1.735	1.574	1.713	1.524	2.402	2.197	2.314	2.111
B3LYP*	2.861	2.620	2.083	1.891	2.040	1.824	2.762	2.490	2.658	2.402
B3LYP	3.037	2.740	2.266	2.045	2.214	1.971	2.943	2.611	2.834	2.529
PBE0	3.216	2.811	2.451	2.169	2.388	2.092	3.122	2.672	3.018	2.613
MPW1B95	3.353	2.972	2.620	2.334	2.549	2.255	3.236	2.805	3.165	2.783
BMK	3.650	3.176	2.952	2.582	2.868	2.506	3.353	2.893	3.466	2.992
M06-2X	3.860	3.374	3.146	2.763	3.112	2.731	3.3287	2.941	3.727	3.225
M06HF	4.404	3.785	2.805	2.492	2.808	2.495	2.883	2.568	3.816	3.492

Table S1. Calculated $E_{VA}(S_1)$ and $E_{VA}(T_1)$ using various XC functionals based on B3LYP optimized S₀ geometry (unit of all the data is eV).

Figure S1. Dependence of $E_{VA}(S_1)$ and $E_{VA}(T_1)$ of the compounds investigated on the HF% in TD-DFT functionals.

Table S2. CI description of S_1 transition by B3LYP/6-31G* level and the amount of charge transfer.

Compound	CI coefficient	CL description of S	Cj %a	CT amount
Compound		CI description of S ₁		(q)
ТТО	0.70106	HOMO→LUMO	98.3%	0.8609
AQ1	0.70404	HOMO→LUMO	99.1%	0.8614
AQ2	0.70383	HOMO→LUMO	99.1%	0.8283
DMD	0.68883	HOMO→LUMO	94.9%	0.8548
MID	0.70384	HOMO→LUMO	99.1%	0.8518

 ${}^{a}\overline{C_{j}\%} = (CI \text{ coefficient})^{2} \times 2 \times 100\%.$

Compound	OHF%	$E_{\rm VA}(S_1,OHF)$	$E_{00}(^{3}LE)$				
Compound)	BMK	M06-2X	M06-HF	Average	
ТТО	36	3.49	2.797	2.769	2.821	2.796	
AQ1	36	2.78	2.347	2.251	1.827	2.142	
AQ2	35	2.68	2.188	2.225	1.829	2.081	
DMD	36	2.85	2.540	2.312	1.885	2.246	
MID	36	3.32	2.630	2.643	2.596	2.623	

Table S3. Calculated $E_{00}({}^{3}LE)$ of the Cz-based compounds using OHF (unit of all the energy data is eV).

Table S4. Calculated $E_{00}(S_1)$ and $E_{00}(T_1)$ and relaxation energies using various XC functionals based on the optimized excited states (unit of all the data is eV).

Functional		TTO	401	102	DMD	MID
T'unctionai	F (G)	1.524				
BLVP	$E_{00}(S_1)$	1.734	0.977	0.957	1.572	1.493
DETT	$E_{00}(T_1)$	1.730	0.974	0.952	1.565	1.487
MPWLYP1	$E_{00}(S_1)$	1.953	1.203	1.180	1.800	1.717
Μ	$E_{00}(T_1)$	1.948	1.199	1.174	1.792	1.710
D2I VD*	$E_{00}(S_1)$	2.34	1.64	1.60	2.24	2.15
DJLII	$E_{00}(T_1)$	2.33	1.635	1.59	2.23	2.14
D2I VD	$E_{00}(S_1)$	2.53	1.86	1.81	2.45	2.36
DJLII	$E_{00}(T_1)$	2.51	1.84	1.80	2.40	2.30
DDEU	$E_{00}(S_1)$	2.73	2.10	2.04	2.70	2.60
I DEV	$E_{00}(T_1)$	2.57	1.99	1.95	2.47	2.37
	$E_{00}(S_1)$	2.91	2.24	2.30	2.93	2.83
	$E_{00}(T_1)$	2.74	2.06	2.12	2.55	2.55
DML	$E_{00}(S_1)$	3.26	2.66	2.68	3.09	3.18
DIVIN	$E_{00}(T_1)$	2.86	2.27	2.32	2.69	2.67
CAM D2I VD	$E_{00}(S_1)$	3.607	3.134	3.085	3.244	3.558
CANI-DJL I F	$E_{00}(T_1)$	2.736	2.252	2.239	2.578	2.515
	$E_{00}(S_1)$	3.782	3.224	3.23	3.213	3.659
₩ D 7/ A-D	$E_{00}(T_1)$	2.896	2.386	2.359	2.795	2.636
Export	$E_{00}(S_1)$	2.54	2.15	2.11	2.53	2.45
naper intental	$E_{00}(T_1)$	2.51	2.13	2.10	2.50	2.41

Functional		ТТО	AQ1	AQ2	DMD	MID
D2I VD*	λ_{S}	0.52	0.44	0.44	0.52	0.51
DJLII	λ_{T}	0.29	0.26	0.23	0.26	0.26
D2I VD	$\lambda_{\rm S}$	0.51	0.41	0.40	0.49	0.47
DJLII	λ_{T}	0.23	0.20	0.17	0.21	0.23
DDFA	$\lambda_{\rm S}$	0.49	0.35	0.35	0.42	0.42
I DEU	λ_{T}	0.24	0.18	0.142	0.20	0.24
	$\lambda_{\rm S}$	0.44	0.38	0.25	0.31	0.34
	λ_{T}	0.23	0.27	0.14	0.26	0.23
BMK	$\lambda_{\rm S}$	0.39	0.29	0.19	0.26	0.29
DIVIN	λ_{T}	0.32	0.31	0.19	0.20	0.32

Table S5. Calculated relaxation energies (λ) using various XC functionals (unit of all the data is eV).

Figure S2. HOMO and LUMO of the S_1 state calculated at the B3LYP/6-31G* level.

Figure S3. Hole-particle pairs of natural transition orbitals (NTO) of the optimized T_1 state for the Cz-based molecules.