Supporting Information for the manuscript

Photocatalytic Oxidation of Methane over SrCO₃ Decorated SrTiO₃

Nanocatalysts via a Synergistic Effect

Xiaoyang Pan,^{a‡} Xuxing Chen^{a,b‡} and Zhiguo Yi^{*a}

^aKey Laboratory of Design and Assembly of Functional Nanostructures & Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^bInstitute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan 430079, China.

E-mail: <u>zhiguo@fjirsm.ac.cn</u> **‡**These authors contributed equally.

Fig. S1. The XRD patterns of SrTiO₃ samples prepared by different methods.

Fig. S2. Ultraviolet–visible diffusive reflectance spectra of: a, the SrTiO₃ samples. b, SrCO₃ powder; The plots of transformed Kubelka-Munk Function *versus* the energy of light of: c, the SrTiO₃samples. d, SrCO₃.

Samples	Surface area (m ² /g)	Particle size (nm)
SrTiO ₃ -S	43.15	~25
SrTiO ₃ -H	32.68	~30
SrTiO ₃ -C	5.46	~400

Table S1. Surface areas and particles size of the SrTiO₃ samples prepared by different methods.

Fig. S3. Experimental conditions of CH_4 photooxidation. a, Setup of the CH_4 photooxidation. b, The spectrum of the Xe lamp.

Fig. S4. The band edge diagrams of some known photoactive semiconductors.

Fig. S5. Phase identification and methane photooxidation properties of some typical semiconductors under simulated solar light illumination. a, Room temperature XRD patterns. b, Time course of CH_4 photo-oxidation.

Fig. S6. Time course of CH_4 photooxidation over the $SrTiO_3$ -S samples under simulated solar light illumination.

Turnover number calculations

Take reaction formula: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$, the number of electrons gain and loss in the reaction is 8·e⁻¹. We assume that all electrons are excited by light. The amount of substance of 5 mL CH₄: $n_1 = 5mL/(22.4L \cdot mol^{-1}) = 2.232 \times 10^{-4} mol$; The total amount of substance of electrons gain and loss in the photooxidation of 5 mL CH₄ : $n_2 =$ $8 \times 2.232 \times 10^{-4} mol = 1.7857 \times 10^{-3} mol$; For the 0.2 g SrTiO₃ samples: n_3 $= 0.2g/(183.49g \cdot mol^{-1}) = 1.09 \times 10^{-3} mol$; The Turnover number $n = (1.7857 \times 10^{-3} mol)/(1.09 \times 10^{-3} mol) = 1.64$.

Fig. S7. Defects analysis of the as-prepared SrTiO₃ samples. a, EPR spectra. b, PL spectra. Both collected at room temperature.

Fig. S8. Photocatalytic oxidation of methane over $SrCO_3$ - $SrTiO_3$ -H nanocomposites under simulated solar light irradiation (a); Photocatalytic CH₄ oxidation performance of the P25 sample and the 5.0wt% SrCO₃ loaded P25 (5wt%SrCO₃-P25) sample under simulated solar light illumination (b).

Fig. S9. Infrared spectra of CH₄ adsorption upon various materials at room temperature.

	v ₁ (C-H)	v ₂ (C-H)
CH ₄	3015.84	1303.94
SrCO ₃	3016.07	1304.33
BaCO ₃	3016.02	1304.22
LiCO ₃	3016.30	1302.73
CaCO ₃	3016.14	1304.12

Table S2. IR bands of CH₄ adsorbed on different samples.

Fig. S10. Energy Band diagram of: a, SrTiO₃. b, SrCO₃.

Fig. S11. Mott-Schottky plot of SrCO₃ at different frequency; the inset shows the energy band structure of SrCO₃.

Fig. S12. Proposed charge separation process over $SrCO_3/SrTiO_3$ nanocomposite. Herein the defects excitation within $SrCO_3$ is omitted for simplicity.