Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supporting Information A

Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen

Walerian Arabczyk, Ewa A. Ekiert, Rafał Pelka*

West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, 10 Pułaskiego Str., 70-322 Szczecin, Poland * Corresponding author: tel. +48 91 449 47 30, fax +48 91 449 46 86, e-mail: rpelka@zut.edu.pl

List of symbols used in the text

Symbol	Unit	Definition
α		solid solution of α -Fe with nitrogen, sublattice of Fe bcc
γ		solid solution of γ -Fe with nitrogen, sublattice of Fe fcc
γ'		γ'-Fe ₄ N _{1-x} , sublattice of Fe fcc
μ	kJ	chemical potential
N_{g}		nitrogen in a gas phase
N _s		nitrogen on a surface of solid phase
N _b		nitrogen in a bulk of solid phase
X		mole fraction
θ		surface coverage degree
ΔH_a	kJ/mol	enthalpy of adsorption of nitrogen molecules on the surface of iron
ΔH_{cb}	kJ/mol	enthalpy of formation of the bond between the surface iron atom and nitrogen, Fes-N
ΔG	kJ/mol	Gibbs energy
ΔG_{seg}	kJ/mol	Gibbs energy of segregation
E _s	kJ/mol	Surface energy of nanocrystallite
Fe _s -		unoccupied surface iron atom, free adsorption site for nitrogen molecule
Fe _s -N		surface iron atom bonded with nitrogen
Γ	J/m ²	density of the surface energy
P	Pa ^{-0.5}	nitriding potential
superscript n or r		as appropriate for nitriding ⁿ or reduction ^r process

Electronic Supporting Information A

Symbol	Unit	Definition
superscript or subscript α or γ or γ'		designation of α -Fe $^{\alpha}$, γ -Fe $^{\gamma}$, γ '-Fe4N $^{\gamma}$ ' phases
subscript 0 or max		as appropriate for the minimum and maximum of nitriding potential at which phase exist
square bracket []		transition state