Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supporting Information B

Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen

Walerian Arabczyk, Ewa A. Ekiert, Rafał Pelka*

West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, 10 Pułaskiego Str., 70-322 Szczecin, Poland * Corresponding author: tel. +48 91 449 47 30, fax +48 91 449 46 86, e-mail: rpelka@zut.edu.pl

Thermodynamics of the process of gaseous ammonia nitriding of nanocrystalline iron

In the process of nitriding with gas mixtures containing ammonia there on the surface of α -Fe nanocrystallite the disassociative adsorption of NH₃ molecules takes place:

$$NH_3^g \leftrightarrow N^a + \frac{3}{2}H_2^g \tag{S1}$$

The equilibrium constant of dissociation reaction, K, of an ammonia molecule for the above reaction can be expressed as:

$$K = \frac{p_N \cdot p_{H_2}^{3/2}}{p_{NH_3}}$$
(S2)

Substituting the expression for the nitriding potential, we obtain:

$$p_N = K \cdot P \tag{S3}$$

where: p_N – hypothetical nitrogen partial pressure.

Atomic nitrogen species adsorbed at the nanocrystallite surface diffuse into its bulk and creates solid state solution with iron, α -Fe(N). At steady state for the Fe-NH₃-H₂ system, between nitrogen atoms in the gas phase and adsorbed on the surface of iron nanocrystallite and dissolved in its volume the chemical equilibrium is established. Chemical potentials of nitrogen (μ_N) present in the system in different states are equal to each other. Apart from that, chemical potential of nitrogen in a gas phase equals p_N :

$$\mu_{N_g} = p_N \tag{S4}$$

Assuming that the activity coefficient in dilute solutions is close to unity, $\gamma = 1$:

$$\mu_{N_b} = \gamma \cdot x_{N_b}^{\alpha} = x_{N_b}^{\alpha} \tag{S5}$$

$$x_{N_b}^{\alpha} = p_N = K \cdot P \tag{S6}$$

If the equivalent concentrations of nitrogen: in the gas-phase and adsorbed on the surface meet the assumptions for the Langmuir's equation then nanocrystallite is in the chemical equilibrium:

$$\frac{\theta_N^{\alpha}}{1 - \theta_N^{\alpha}} = p_N \cdot exp^{\frac{-\Delta G_{ads}}{RT}}$$
(S7)

where: ΔG_{ads} – Gibbs energy of nitrogen molecule adsorption process; R – gas constant; θ_N^{α} – surface coverage degree defined as ratio of the concentration of surface iron atoms covered with nitrogen, x_{Fe-N}^{α} , to the sum of the concentrations of surface iron atoms covered with nitrogen and free adsorption sites $x_{Fe-N}^{\alpha} + x_{Fe-}^{\alpha}$:

$$\theta_N^{\alpha} = \frac{x_{Fe-N}^{\alpha}}{x_{Fe-N}^{\alpha} + x_{Fe-}^{\alpha}}$$
(S8)

Concentration of nitrogen dissolved in a volume of iron crystallite, $x_{N_b}^{\alpha}$, and adsorbed on nanocrystallite surface, $x_{N_s}^{\alpha}$, are connected with each other in accordance with the McLean-Langmuir equation:

$$\frac{\theta_N^{\alpha}}{1-\theta_N^{\alpha}} = \frac{x_{N_b}^{\alpha}}{1-x_{N_b}^{\alpha}} \cdot exp^{\frac{-\Delta G_{seg}^{\alpha}}{RT}}$$
(S9)

where ΔG_{seg}^{α} , it is Gibbs energy of the nitrogen segregation process in α phase.

With an increase in chemical potential of nitrogen in the gas phase the iron nanocrystallite surface coverage degree, θ_N^{α} , increases as well as nitrogen concentration in nanocrystallite volume, $x_{N_b}^{\alpha}$, in accordance with the McLean-Langmuir equation, up to the maximum critical levels, $\theta_{N_{max}}^{\alpha}$ and $x_{N_{bmax}}^{\alpha}$, respectively.

For dilute solutions, i.e. solution of nitrogen in α -iron, where $n_N \ll n_{Fe}$ and nFe = 1 (number of moles of iron), number of moles of nitrogen is equal to nitrogen molar fraction according to the equation:

$$x_N^{\alpha} = \frac{n_N}{n_{Fe} + n_N} \approx n_N \tag{S10}$$