Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016 Electronic Supplementary Information Comparison of hydration behavior and conformational preferences of Trp-cage mini-protein in different rigid-body water models Madhulika Gupta ^a, Divya Nayar ^a, Charusita Chakravarty ^{‡a} and Sanjoy Bandyopadhyay *^b ^aDepartment of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India. ^b Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India; Tel: +91 3222 283344; Tel: +91 3222 283344; E-mail: sanjoy@chem.iitkgp.ernet.in **Table SI-1** Order parameters for temperatures below and above the unfolding transition for Trp-cage solvated with different water models. Extended simulations upto 50 ns are denoted by asterisk. | | T_{Target} | $\langle T \rangle$ | RMSD | R _{core} | R_g | N _{nc} | |----------|--------------|---------------------|------------|-------------------|------------|-----------------| | - | (K) | (K) | (Å) | (Å) | (Å) | | | mTIP3P | 450 | 449.6 | 2.6 (0.2) | 5.2 (0.03) | 7.5 (0.02) | 29 (1) | | | 450* | 449.0 | 2.6 (0.1) | 5.3 (0.02) | 7.5 (0.01) | 29 (0.2) | | | 460 | 458.9 | 5.6 (0.5) | 7.3 (0.3) | 8.7 (0.2) | 22 (1) | | | 460* | 461.9 | 5.7 (0.4) | 7.8 (0.3) | 8.3 (0.1) | 19(1) | | TIP4P | 460 | 462.0 | 2.6 (0.1) | 5.3 (0.1) | 7.5 (0.01) | 29 (0.1) | | | 460* | 464.3 | 2.6 (0.1) | 5.3 (0.1) | 7.5 (0.02) | 29 (0.1) | | | 470 | 471.4 | 5.4 (1.0) | 7.6 (0.9) | 8.8 (0.5) | 21 (3) | | | 470* | 478.2 | 6.3 (0.4) | 8.5 (0.4) | 9.2 (0.2) | 19 (1) | | TIP4P-Ew | 420 | 417.2 | 2.4 (0.04) | 5.1 (0.02) | 7.5 (0.01) | 29 (0.1) | | | 420* | 420.3 | 2.4 (0.03) | 5.1 (0.01) | 7.5 (0.01) | 29 (0.1) | | | 430 | 426.9 | 7.4 (0.1) | 8.3 (0.4) | 9.1 (0.3) | 14 (1) | | | 430* | 429.8 | 7.3 (0.09) | 8.5 (0.2) | 9.0 (0.1) | 15 (1) | **Table SI-2** Different order parameters for the variants of U1 state solvated with different water models around 250 K. U1 refers to ensemble averaged values over 20 ns run length while U1* refers to ensemble averaged values by extending the former run upto 100 ns. U1a and U1b refers to additional unfolded ensembles around 250 K obtained after repetitive quenching from the same initial configuration at respective high temperatures. Helical content is found to be zero for all these states in all the water models. | E | nsemble | D _{end}
(Å) | R _g
(Å) | RMSD
(Å) | N _{nc} | SASA
(Å ²) | R _{core}
(Å) | RMSD _{core}
(Å) | SASA _{core}
(Å ²) | |--------|---------|-------------------------|-----------------------|---------------|-----------------|---------------------------|--------------------------|-----------------------------|---| | mTIP3P | U1 | 21.5
(0.6) | 11.6
(0.3) | 9.2
(0.2) | 10
(0.2) | 2636
(33) | 12.1
(0.4) | 10.0
(0.4) | 1283
(6) | | | U1* | 22.4
(0.3) | 11.6
(0.1) | 9.2
(0.1) | 10
(0.2) | 2607
(10) | 12.5
(0.1) | 10.4
(0.1) | 1297
(2) | | | U1a | 20.3
(1.6) | 11.6
(0.8) | 9.0
(0.6) | 10
(0.4) | 2616
(36) | 13.0
(0.9) | 10.8
(1) | 1229
(7) | | | U1b | 21.2
(1.2) | 11.2
(0.3) | 8.9
(0.3) | 15
(0.2) | 2587
(17) | 10.8
(0.5) | 9.1
(0.5) | 1182
(12) | | TIP4P | U1 | 19.1
(1.6) | 11.9
(0.3) | 9.9
(0.3) | 6
(0.2) | 2768
(32) | 12.3
(0.3) | 10.6
(0.3) | 1296
(3) | | | U1* | 20.6
(0.6) | 12.2 (0.2) | 9.9
(0.1) | 7
(0.1) | 2823
(12) | 12.5
(0.2) | 10.8
(0.2) | 1281
(3) | | | U1a | 19.2
(0.9) | 12.7
(0.3) | 9.9
(0.3) | 8
(0.2) | 2794
(26) | 12.5
(0.3) | 10.5
(0.3) | 1288
(5) | | | U1b | 23.3
(1.2) | 12.2
(0.3) | 9.8
(0.2) | 12
(1) | 2713
(25) | 11.6
(0.5) | 9.9
(0.5) | 1203
(7) | | TIP4P | U1 | 27.0
(1) | 12.9
(0.3) | 10.0
(0.2) | 3
(1) | 2819
(18) | 12.9
(0.3) | 10.6
(0.3) | 1287
(3) | | -Ew | U1* | 23.6
(1) | 13.1 (0.1) | 10.1 (0.2) | 4
(2) | 2853
(10) | 13.2
(0.2) | 10.9
(0.2) | 1258
(6) | | | U1a | 24.0
(1.4) | 12.4
(0.3) | 9.9
(0.4) | 9
(0.2) | 2792
(14) | 13.6
(0.4) | 11.5
(0.5) | 1295
(2) | | | U1b | 28.7
(1) | 13.0
(0.2) | 9.8
(0.2) | 6
(0.3) | 2861
(18) | 13.6
(0.2) | 11.3
(0.3) | 1300
(3) |