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S1. Measured Samples and Test Setup 

All the measurements reported in this work were carried out 
with an undoped hematite photoanode that was deposited by 
spray pyrolysis on fluorine doped tin oxide (FTO) coated glass 
substrate (TEC 15, Hartford Glass). The sprayed solution 
contained 10 mM of Fe(acac)3 (99.9 %, Aldrich) in EtOH (99.8% 
Fluka). On the first stage, a bottom layer was deposited. 
During the bottom layers' deposition, two columns of three 
substrates (six in total) were subjected to 5 ml of solution 
spray.  For the top layer deposition, a new Fe(acac)3 in EtOH 
solution was prepared. During the top layer deposition, two 
columns of four couples of photoanodes (eight photoanodes in 
total) were subjected to 10 ml of solution spray. The spray 
setup consisted of an ultrasonic spray head (Lechler, US1 308), 
set 30 cm above the substrates, which were placed on a hot 
plate, heated to 520°C (corresponding to a measured substrate 
surface temperature of about 400°C). An automatic syringe 
pump was used to deliver 1 ml of a solution to the spray head, 
every 30 s at a feeding rate of 12 ml per min (spray length of 
5 s). The carrier gas (compressed air) flow, directing the spray 
to the substrates, was set to 15 ml per min. After spraying, the 
samples were cooled down in air to room temperature on the 
hot plate (turned off). The deposition rate for this process is 
known to be 1.5±0.3 nm of hematite per ml,1 which means 
that the bottom layer thickness is 7.5±1.5 nm and the top layer 
thickness is 15±3 nm. The dimensions of the FTO substrate are 
12.5 × 30 mm², 12.5 × 22 mm² of which are covered with 
hematite. The sample was part of a study that examined the 
effect of doping in the bottom and top hematite layers, as 
reported elsewhere.1 However, the sample that was examined 
as a case study in this work featured two undoped hematite 
layers. 
 
All measurements were conducted at ambient temperature 
(air condition 23°C) in alkaline aqueous solution (1M NaOH in 
deionized water). The photoanode was put in a so-called 
"cappuccino cell" as described in Ref. 2. The potential U was 
adjusted versus a reference electrode. Basic working principles 
of reference electrodes and their application to PEC for water 
splitting cells can be found elsewhere.3,4 In this study we used 
an Hg/HgO reference electrode in 1M NaOH aqueous solution, 
which is stable during long measurements in alkaline solutions 
since the internal electrolyte is also 1M NaOH, the same as the 
electrolyte in the PEC cell. The reference electrode has a 
potential of 0.930 VRHE. Experiments conducted longer than 
one day revealed that commonly used Ag/AgCl reference 
electrodes can show a slow drift in potential of several 10's of 
mV, whereas Hg/HgO reference electrodes remained stable for 
several days (not shown here). 
 
PEIS, IMPS and IMVS measurements and J-U curves were 
conducted via a Zahner Zennium electrochemical workstation 
equipped with a CIMPS system.5 The light source was high 

power blue LED (Zahner KBR02) with a dominant wavelength 
of 449.13 nm (half width 13 nm) with a maximum intensity of 
100 mW/cm² (based on manufacturer specifications). The 
frequency range for all the immittance measurements was 
100 kHz to 100 mHz. The amplitude for the light intensity 
excitation for IMPS and IMVS measurements was 3.5 mW/cm² 
(corresponding to 10 mV excitation amplitude adjusted at the 
potentiostat controlling the LED) and 10 mV for PEIS. The 
duration for collecting each spectrum was 10 to 13 min. 

S2. Light Intensity and Photon Flux 

The photon flux, Φ, is defined as the number of photons per 
time period per unit area: Φ = # of photonsݐ ∙ ܣ 	. (S1) 

The unit of Φ is s-1m-2 and it directly indicates the number of 
photons that arrive at the surface of the cell. Distinctions 
accounting for different wavelengths can be easily introduced 
by specifying a wavelength specific photon flux, Φ(λ). 
However, measurement devices usually work with the light 
intensity I as measured by a photodiode. I is the energy per 
time period per unit area: ܫ = ݐܧ ∙  (S2) .ܣ

In order to convert a signal from Φ to I, the spectrum of the 
lamp is required. The lamp spectrum is either given as 
wavelength dependent flux Φ or in counts as arbitrary unit. For 
both cases the spectrum Φlamp(λ) has to be multiplied by hc/λ 
to obtain the (relative) energy of the emitted light intensity 
and normalized to mW/cm². 

S3. Electrochemical Immittance (Impedance/ 
Admittance) Spectroscopy 

General Introduction 

Electrochemical impedance spectroscopy (EIS) is a powerful 
and well-established tool to investigate the dynamic processes 
that are responsible for losses during the operation of 
electrochemical systems. PEIS, IMPS and IMVS are related 
techniques that yield different types of photoelectrochemical 
immittance (i. e. impedance or admittance6) spectra, as 
introduced in equations (3), (4) and (5) of the article, and for 
which the same analysis tools can be applied. 
 
The goal of immittance measurements is to probe the dynamic 
behavior of the system, which is determined by a number of 
physical, chemical or (photo)electrochemical processes with 
different time constants. Whereas static measurements can 
only measure the behavior of the sum of all the processes 
involved, impedance techniques can separate the overall 
resistance into contributions of different processes, provided 
that they show different time constants. 
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The measured quantity is Z(ω), the complex and frequency 
dependent resistance of the cell in a given operating point, 
consisting of the real part, Z'(ω), and the imaginary part, Z''(ω) 
for every measurement frequency ω: ܼ(ω) = ܼᇱ(ω) + ܼ݅ᇱ′(ω) (S3) 

Both the excitation and response signals have the general form ܵ(ݐ) = ܵ଴ + መܵ ∙ sin(ωݐ + φௌ), (S4) 

with S0 being the bias value, Ŝ, being the small signal AC 
amplitude of the sinusoidal signal with the phase angle φS. The 
impedance Z(ω) is calculated for each measurement frequency 
ω from the signals U(t) and J(t) that have the form of equation 
(S4), 

ܼ(ω) = ܷ(ω)ܬ(ω) = ෡ܷܫመ ݁௜(ன௧(஦ೆି஦಺)) . (S5) 

U(ω) and J(ω) are the Fourier coefficients of U(t) and J(t) with 
respect to ω, accounting only for the oscillating small signal 
component of the signals. The inverse value of Z(ω) is the 
admittance Y(ω): ܻ(ω) = ܼ(ω)ିଵ =  (S6) .(ω)ܷ(ω)ܬ

Impedance and admittance data can be analyzed with the 
same approaches and are summarized as immittance.7,8 For 
very low frequencies, Z(ω) converges to one point on the real 
axis, the DC or internal resistance, Z(0), as shown in Figure S1a 
(this is not the case for capacitive systems such as batteries or 
supercapacitors9). Z(0) is the inverse slope of the J-U curve, 
because all dynamic processes have decayed and it is  ܼ(0) ≝ ܼ(ω = 0) = ddܷܬ |௎బ. (S7) 

Comparing Z(0) and the slope of the J-U curve is an easy way 
to check consistency of static and dynamic measurements. If 
there is a mismatch, at least one of the measurement results is 
incorrect. For very high frequencies, Z(ω) converges to 
another point on the real axis, the so-called ohmic resistance, 
R∞, because there are no polarization losses as the sluggish 
loss processes are not excited. Both Z(0) and R∞ are illustrated 
in Figure S1a. When comparing the impedance in Figure S1a 
with the admittance in Figure S1b, it becomes apparent that 
the diagrams are flipped over, in accordance with equation (6): 
lower absolute values are obtained for higher frequencies and 
the imaginary part Z''(ω) is positive for all ω (note that the 
Nyquist diagram for Y(ω) is usually plotted with a positive 
imaginary axis). 
 
The admittance is rarely used in the literature but bares some 
advantages for displaying and fitting impedance data with 
Z(ω)→∞ for ω→∞ or to particularly analyze the high 
frequency behavior, as it is done for Mott-Schottky analysis.10 
Also the result of IMPS is displayed as admittance, as described 
in section  2.3 of the article. In some cases such as IMPS, it is 
preferable to depict the admittance, because Z(ω)→∞ for  

Figure S1: Schematic illustration of (a) impedance and (b) admittance spectra for an 
electrochemical system consisting of purely capacitive elements (such as RC elements). 

ω→∞, whereas Y(ω)→0 for ω→∞, which allows for a more 
intuitive diagram. 
 
Generally, impedance and admittance are defined for the 
relation between current and voltage. In 
(photo)electrochemistry, the current is commonly substituted 
by the current density. However, other combinations of 
quantities are possible and it might be sensible to establish 
new forms of "impedances"11 or "admittances", such as IMPS 
and IMVS. Following the definition in Ref. 11, the IMPS result is 
called photocurrent admittance. This definition complies with 
the concept that an impedance is the "cause" divided by the 
"effect".11 In the case of IMVS this is a bit more difficult and 
here we rely on Ref. 12, where IMVS is defined as photovoltage 
impedance based on considerations of "across" (photovoltage) 
and "through" quantities (light flux). 
 
Kramers-Kronig Test for Immittance Data 

The Kramers-Kronig (KK) test is a powerful and well-
established tool to test the quality of immittance spectra.13 It 
is based on the KK relations that relate the real part of the 
immittance spectrum of a linear, time-invariant and causal 
system to its imaginary part and vice versa.14 KK tests, such as 
"Lin-KK",14 yield residual plots, that indicate the deviation of 
the measured spectrum from a perfectly KK compliant 
spectrum that fulfills the criteria of linearity, time-invariance 
and causality. In principle, it can be stated that if the residuals 
are small and randomly distributed, the spectrum is valid. 
Randomly distributed residuals show that a certain 
measurement noise is present during measurement, but the 
KK relations (therefore the abovementioned criteria) are 
basically satisfied. Systematically distributed residuals account 
for a violation of the criteria for the KK relations. 
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Figure S2. KK residuals calculated by "Lin-KK" for (a) the PEIS spectrum shown in 
Figure 4a of the article and (b) the IMVS spectrum shown in Figure 4b. 

Figure S2 shows the KK residuals for the measured PEIS, IMPS 
and IMVS calculated by "Lin-KK". 
 
It can be observed that the PEIS in Figure S2a shows some 
minor deviations around 10-20 and 3000-4000 Hz but the 
overall data quality is very good (residuals < 0.5%, for the most 
part). The residuals are so small that they probably originate 
from the measurement device itself, for example due to a 
switch in measurement ranges during measurement. The KK 
residuals for the IMVS measurement (Figure S2b) are negligibly 
small indicating a high quality measurement. 
 
While the KK residuals for IMPS (Ypc(ω)) cannot be calculated 
directly, the very low residuals for PEIS and IMVS imply good 
quality for IMPS via equation (6). 
 
The Effect of the Series Resistance on Immittance 

A puzzling effect encountered in IMPS measurements was 
described by Ref. 15. Apparently the time constant of the large 
semicircle in IMPS measurements (Ypc

+(ω)) changes if the 
series resistance of the PEC cell changes. In this section we will 
give a simple explanation for this effect. 
 
We consider a parallel connection of a resistor R1 and a 
capacitor C1, an RC element, in series with a resistor R∞. The 
characteristic frequency 2πfc is the frequency for which the 
magnitude of Z''(ω) shows its maximum, 1/R1C1. However, 
when calculating the frequency for which Y''(ω) shows its 
maximum in magnitude, we obtain  2π ୡ݂ = 1ܴଵܥଵ ∙ ܴஶ + ܴଵܴஶ . (S8) 

Further assuming that the series resistance R∞ << R1, equation 
(8) can be simplified to 2π ୡ݂ = 1ܴଵܥଵ ∙ ܴଵܴஶ = 1ܴஶܥଵ, (S9) 

 
Figure S3. (a) Imaginary part of the impedance Z(ω) for the PEIS spectrum shown in 
Figure 4a; (b) imaginary part of the corresponding admittance Y(ω) = (Z(ω))-1. 

which means that it is considerably shifted. Such a shift is 
visible when comparing the imaginary parts of the impedance 
(Figure S3a) and admittance (Figure S3b) of the PEIS spectrum 
shown in Figure 4a of the article. The characteristic 
frequencies are shifted by about three decades. If we change 
equation (6) to  

୮ܻୡ(ω) = ܼ୮୴(ω)ܼ(ω) = ܼ୮୴(ω) ∙ 	ܻ(ω), (S10) 

it is obvious that the characteristic frequencies of Ypc(ω) is 
influenced by Y(ω) (equation (S10)), which directly depends on 
R∞ (equation (S9)). 

S4. Example Fits for Two Standard ECMs 

As already mentioned in section  3.1, there is generally no 
unique solution for an ECM. In the example given here we 
fitted the PEIS spectrum shown in Figure 4a to both of the 
ECMs in Figure 6 (model 1 and 2, respectively). Subsequently, 
we replaced the two capacitors by constant phase elements 
(CPE) and the fits improved significantly (model 3 and 4, 
respectively). Table S1 shows the fit results obtained by 
commercial software for all circuit elements plus the ΣΧ² 
value, which is an indicator of the "goodness of the fit". 
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It can be observed that: 
• The ECMs in Figure 6 lead to the same "goodness of fit" 

(ΣΧ²) while producing slightly different values for R1, R2, C1 
and C2). This is in agreement with Ref. 17 (see also 
section  3.1). 

• Much better "goodness of fit" can be achieved by replacing 
the capacitors in Figure 6 by CPEs, which again leads to 
similar fit results for models 3 and 4 in terms of the 
parameter values and the "goodness of the fit". 

• Acceptable fits for the hematite photoanode measured 
here (Figure 4a) are only possible with modifications of the 
ECMs, namely replacing all capacitors by CPEs as presented 
in Refs. 18 and 19. 

• It can hardly be judged from these results, which of the 
ECM is more suitable to describe the behavior of hematite 
photoanode accurately. 

Another important indicator to judge the quality of an ECM 
and the corresponding fit is the residual plot, which is often 
omitted, unfortunately. Similar to the KK test discussed in 
section  S3, only small and randomly distributed residuals 
indicate appropriate fit results. Figure S4 shows the residuals 
for the fits compiled in Table S1. 
 
It is most apparent that the residuals for all the fits to models 
with only capacitors show very large systematic deviations. 
The values of 10% are far beyond the limit that can be 
considered a good fit, even though the quality of the 
measurement was very good, as confirmed by the KK residuals 
in Figure S2a. Replacing the capacitors by CPEs yields an 
improvement by one order of magnitude as residuals are 
below 1% in Figure S4c and d. However, these two plots also 
show some oscillations – i. e. systematic deviations – below 
10 Hz that indicate that the model does not perfectly describe 
the behavior of the photoanode. The residuals for the DRT 
spectra in Figure 8 are small also at low frequencies. The only 
deviations in Figure S4e are around 10-20 and 3000-4000 Hz, 
where also the KK residuals in Figure S2a showed some minor 
artefacts that might also be caused by measurement errors 
(see also section  S3). 
 
By this example we showed that it is quite difficult to produce 
good fit results even with high quality PEIS measurements. The 
ambiguity of two common ECMs for hematite photoanodes 
was also demonstrated plus the superior accuracy for the DRT 
calculation, which is the basis of our empirical analysis 
approach.  

 

Figure S4. Residual plots for the fit results compiled in Table 1, (a) to (d) models 1-4, 
and (e) for the calculation of the DRT shown in Figure 8. Note the different scaling of 
the y-axis in (a) and (b) as compared to (c), (d) and (e). 
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e)

d)

Model RS R1 C1 CPE1 R2 C2 CPE2 ΣΧ2

1 12.1 153 3.86 - 466 125 - 1.75 

2 12.1 144 3.98 - 475 126 - 1.75 

3 11.4 160 - 8.67 (0.91) 511 - 210 (0.86) 6.99·10-3 

4 11.3 143 - 9.21 (0.91) 530 - 213 (0.86) 6.06·10-3 

Table S1. Fit results obtained for fitting the PEIS spectrum from Figure 4a to both of the ECMs shown in Figure 6a (model 1) and Figure 6b (model 2), and replacing the 
capacitors by constant phase elements. The names of the elements in this table are taken from the brackets in Figure 6. All resistances are given in Ωcm² and capacitors and 
constant phase elements (CPE)16 are given in µF/cm² (for the CPEs the exponent is provided in brackets).  
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S5. Linear Curve Fitting 

Static curves such as the J-I curve can be fitted with a linear 
curve fitting approach. The fit problem is rewritten as a system 
of linear equations.  
 
For example let us assume a curve fitted with a polynomial 
function of the order n, ݕ = ܿ௡ݔ௡ + ܿ௡ିଵݔ௡ିଵ + ⋯+ ܿଵݔ଴	. (S11) 

The fit problem can be written as ܣ ∙ ܿ − ܾ = 0,  (S12) 

with the goal to find the appropriate coefficient vector c, 
which is defined as ்ܿ = ሾܿ௡ ⋯ ܿଵሿ.  (S13) 

Any dataset that adds information to the fit problem yields a 
row aT in the matrix A (n columns) and an element in the 
vector b. A static measurement point (x, f(x) = y) yields: ்ܽ = ሾݔ௡ ⋯ ,଴ሿݔ ܾ =  (S14) .	ݕ

From immittance data, the derivatives in a measurement point 
can be obtained for ω→0, accounting for the local slopes in 
the J-U or J-I curves. Immittance data (x, f'(x) = y') yields: ்ܽ = ሾ݊ ∙ ௡ିଵݔ (݊ − 1) ∙ ௡ିଶݔ ⋯ ଴ݔ 0ሿ, ܾ = ′ݕ . (S15) 

In order to solve the linear system in equation (S12), we apply 
the method "linsolve" in Matlab that uses LU factorization. The 
order n should be chosen as small as possible in order to limit 
the degrees of freedom and to obtain a smooth curve. On the 
other hand it should account for the characteristic features of 
the curve. For J-I curves, an order of n = 2 seems to be 
reasonable for small errors and good agreement with the 
static and immittance measurements. 
 
Other static curves such as J-U curves exhibit plateaus and 
other features than can hardly be represented by polynoms. 
For fitting these curves, a nonlinear curve fitting approach is 
required. The Matlab method "fit" is well-suited for this 
purpose. 
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