Supporting Information

Suppressing Dissolution of Polysulfides with Cosolvent Fluorinated

Diether towards High-performance Lithium Sulfur Batteries

Sui Gu^{a,b,c}, Rong Qian^{b,*}, Jun Jin^a, Qingsong Wang^{a,c}, Jing Guo^{a,c}, Sanpei Zhang^{a,c}, Shangjun Zhuo^b, and Zhaoyin Wen^{a,*}

^aCAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
^bNational Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
^cGraduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
*Corresponding author E-mail addresses: <u>qianrong@mail.sic.ac.cn</u> and

*Corresponding author E-mail addresses: <u>qianrong@mail.sic.ac.cn</u> and <u>zywen@mail.sic.ac.cn</u>

Figure S1. Fourier transform infrared spectra of LiTFSI, fluorinated diether (FDE), and the supernatant of the LiTFSI/FDE mixture.

Figure S2. EIS analysis of 80% FDE electrolytes at different cycles after fully charged.

Figure S3. Cyclic voltammogram profiles of 80% FDE electrolyte cell at scan rate of 0.2 mV s⁻¹.

Figure S4. Cycle performance and coulombic efficiency of 80% FDE electrolytes at different rate.

Figure S5. a. Rate performance of Li-S cell with 80% FDE electrolyte. b. Selected dischargecharge profiles at various current rate.

Figure S6. a. XPS spectra of S 2p of lithium anodes with different electrolytes after 20 cycles. **b.** Fitted S 2p spectra (Figure 1a. black curve).

Figure S7. SEM image (a) and EDS map (b) of cross section for Li anode with 80% FDE electrolyte. SEM image (c) and EDS map (d) of cross section for Li anode with basic electrolyte.

				•
	Molecular weight (Mw)	Density (ρ, g/ml)	Formula for N_O and N_{Li^+}	Mole numbers of Oxygen and Li ⁺ (N _O , mol) (N _{Li+} , mol)
DOL	74.08	1.06	$V^* \rho_{*2}$	0.0286V
DME	90.12	0.867	$M_0 = \frac{M_W}{M_W}$	0.0192 <i>V</i>
Li ⁺	—		$N_{Li+} = 10V * 10^{-3}$	0.01 <i>V</i>

Table S1. Mole numbers of Oxygen atom and Lithium ion in electrolyte (N $_{\rm O}$ and N $_{\rm Li+}$)

(*V* is the volume of electrolyte, and Oxygen atom is from DOL/DME.) Mole ratio (Li⁺: O) = 1: (2.89+1.92) = 1: 4.8

In the 80% FDE system, the molar ratio of Li^+ and oxygen atom of DOL/DME is about 1: 4.8. Because the coordination number of Li^+ is about 4~5, most oxygen atom

from DOL/DME can be coordinated to the Li^+ .

Electrolytes	E _{10th}	E _{11th}	$\Delta E (E_{10th}-E_{11th})$
Basic electrolyte	2.51 V	2.09 V	0.42 V
80% FDE electrolyte	2.30 V	2.12 V	0.18 V

Table S2. Open circuit voltage (E) values of cells at different cycles and $\triangle E$.