Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

This journal is © The Royal Society of Chemistry 2016

A Theoretical Study on Weak Interactions in Phenylenediamine Homodimer Clusters

5

Chengqian Yuan,^{a,b} Haiming Wu,^{a,b} Meiye Jia,^a Peifeng Su,^{*c} Zhixun Luo^{*,a} and Jiannian Yao^{*,a}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

^a Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, State Key Laboratory for Structural Chemistry 10 of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Fax: +86-10-62553453; Tel: +86-10-62553453;

E-mail: zxluo@iccas.ac.cn, jnyao@iccas.ac.cn.

^bUniversity of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China.

eFujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen

15 University, Xiamen, Fujian 361005, China.

Fig S1. Interaction energies (kcal/mol) of the phenylenediamine homodimer clusters calculated at different levels of theory.

- 20 Interaction energies of phenylenediamine dimer (pdd) clusters calculated at traditional DFT B3LYP, dispersion-corrected DFT M06-2X, ωB97X-D, and B3LYP-D3 as well as the MP2 levels of theory are illustrated in Fig. S1 and also listed in Tables S1-S4. It is worth mentioning that the interaction energies of the pdd clusters obtained at the B3LYP level of theory largely differ from those calculated using dispersion-corrected DFT. This is because the B3LYP theory does not include the dispersion
- 25 interaction, while the ω B97X-D functional includes empirical dispersion and treats hydrogen bonding and van der Waals forces more reasonable than conventional DFT.

Dimer cluster	$\Delta \mathbf{E}$	BSSE	ZPVE	$\Delta \mathbf{E}^{\mathbf{e}}$	ΔE^{e0}
opdd1	-6.41	0.79	1.30	-5.61	-4.31
opdd2	-6.49	0.62	1.54	-5.87	-4.33
opdd3	-5.05	0.54	1.07	-4.51	-3.44
ppdd1	-3.67	0.48	0.89	-3.19	-2.3
ppdd2	-3.65	0.63	0.90	-3.02	-2.12
ppdd3	-2.60	0.68	0.67	-1.92	-1.25
mpdd1	-4.84	0.71	1.00	-4.13	-3.13
mpdd2	-4.00	0.61	0.95	-3.39	-2.44
mpdd3	-3.44	0.60	0.68	-2.84	-2.16
mpdd4	-3.99	0.76	0.88	-3.23	-2.35
mpdd5	-3.76	0.48	0.79	-3.28	-2.49

Table S1. Interaction energies (kcal/mol) of all the phenylenediamine homodimer clusters calculated at the B3LYP/6-311++G(d,p) level of theory.

 ΔE^{e} : BSSE corrected interaction energy; ΔE^{e0} : BSSE+ZPE corrected interaction energy.

Table S2. Interaction energies (kcal/mol) of all the phenylenediamine homodimer clusters calculated at the M06-2X/6-5 311++G(d,p) level of theory.

Dimer cluster	$\Delta \mathbf{E}$	BSSE	ZPVE	$\Delta \mathbf{E}^{\mathbf{e}}$	ΔE^{e0}
opdd1	-9.82	1.79	1.01	-8.03	-7.02
opdd2	-10.47	0.72	1.45	-9.75	-8.3
opdd3	-8.29	0.80	0.98	-7.49	-6.51
ppdd1	-9.01	1.06	1.02	-7.95	-6.93
ppdd2	-8.69	1.14	1.01	-7.55	-6.54
ppdd3	-10.81	1.35	1.15	-9.46	-8.31
mpdd1	-10.92	0.9	1.09	-10.02	-8.93
mpdd2	-13.37	1.44	1.26	-11.92	-10.66
mpdd3	-10.31	1.27	0.89	-9.03	-8.14
mpdd4	-12.43	1.41	0.74	-11.01	-10.27
mpdd5	-6.34	0.69	0.49	-5.65	-5.16

 ΔE^{e} : BSSE corrected interaction energy; ΔE^{e0} : BSSE+ZPE corrected interaction energy.

Table S3. Interaction energies (kcal/mol) of all the phenylenediamine homodimer clusters calculated at the B3LYP-D3/6-311++G(d,p) level of theory.

Dimer cluster	$\Delta \mathbf{E}$	BSSE	ZPVE	$\Delta \mathbf{E}^{\mathbf{e}}$	ΔE^{e0}
opdd1	-				
opdd2	-11.89	0.74	1.82	-11.15	-9.33
opdd3	-8.86	0.68	1.19	-8.18	-6.99
ppdd1					
ppdd2	-8.34	0.88	1.17	-7.46	-6.29
ppdd3	-10.26	1.18	1.30	-9.08	-7.78
mpdd1	-10.67	1.21	1.46	-9.46	-8.00
mpdd2	-12.26	1.13	1.34	-11.13	-9.79
mpdd3	-9.89	1.13	1.10	-8.76	-7.66
mpdd4	-11.79	1.23	1.17	-10.56	-9.39
mpdd5					

 ΔE^{e} : BSSE corrected interaction energy; ΔE^{e0} : BSSE+ZPE corrected interaction energy.

Table S4. Interaction energies (kcal/mol) of all the phenylenediamine homodimer clusters calculated at different basis sets on the ω B97X-D and MP2 levels of theory.

Theory	opdd2		ppdd3		mpdd2	
T neor y	ΔE	ΔE^{e}	ΔE	ΔE^{e}	ΔE	ΔE^{e}
ωB97X-D/6-311++g(d,p)	-12	-11.26	-11.01	-9.92	-12.97	-11.83
ωB97X-D/6-311++g(2d,p)	-11.16	-10.68	-10.31	-9.56	-12.23	-11.54
ωB97X-D/6-311++g(3d,p)	-10.97	-10.54	-10.30	-9.50	-12.12	-11.34
ωB97X-D/6-311++g(2d,2p)	-11.03	-10.58	-9.94	-9.37	-11.83	-11.30
$\omega B97X$ -D/aug-cc-pvdz	-11.54	-10.22	-10.75	-9.44	-12.67	-11.28
ω B97X-D/aug-cc-pvtz	-10.70	-10.37	-9.61	-9.24	-11.39	-11.00
MP2/6-311++g(d,p)	-11.76	-8.13	-13.81	-7.89	-16.06	-10.15
MP2/aug-cc-pvtz	-13.11	-8.67	-15.21	-9.26	-17.70	-11.59

 ΔE^{e} : BSSE corrected interaction energy.

Table S5. NBO analysis of the intermolecular weak interactions in the secondary stable pdd clusters calculated at the

Dimer cluster Donor		Acceptor	$E_{i \to j^{*}}^{(2)}$	Sum of $E_{i \rightarrow j}^{(2)}$
anddl	LP (1) N2	BD*(1) N17-H30	10.10	20.20
opdal	LP (1) N18	BD*(1) N1-H14	10.10	20.20
	LP (1) N1	BD*(1) N17-H19	2.32	
	LP (1) N1	BD*(2) C23-C29	0.21	
	LP (1) N17	BD*(2) C7-C8	0.13	
ppdd1	BD (2) C7-C8	BD*(2) C20-C21	0.21	4.03
	BD (2) C20-C21	BD*(2) C7-C8	0.79	
	BD (2) C23-C29	BD*(2) N1-H2	0.15	
	BD (2) C23-C29	BD*(2) C8-H9	0.22	
	LP (1) N17	BD*(1) N1-H3	1.57	
	LP (1) N1	BD*(2) C24-C26	0.17	
mpdd4	LP (1) N4	BD*(2) C27-C29	0.18	
	LP (1) N20	BD*(2) C8-C10	0.16	
	BD(2) C23-C31	BD*(1) C8-H9	0.15	3.97
	BD(2) C24-C26	BD*(2) C7-C15	0.32	
	BD(2) C24-C26	BD*(1) C8-C10	0.62	
	BD(2) C27-C29	BD*(1) N4-H6	0.44	
	BD(2) C27-C29	BD*(2) C8-C10	0.36	

	$E^{(2)}$	
$5 \omega B97X-D/6-311++G(d,p)$ level of theory. The second-order perturbation energies	$i \rightarrow j^*$	are in kcal/mol.

Fig. S2 Natural bond orbitals patterns showing N-H…N hydrogen bonding in the opdd clusters. All the second-order perturbative energy is in kcal/mol.

5

Fig. S3 Natural bond orbitals patterns showing N-H $\cdots\pi$ hydrogen bonding and $\pi\cdots\pi^*$ interactions in the ppdd clusters. All the second-order perturbative energy is in kcal/mol.

Fig. S4 Natural bond orbitals patterns showing the N-H···N, N-H··· π , C-H···N, and π ··· π interactions in the mpdd clusters. 10 All the second-order perturbative energy is in kcal/mol.

Table S5. Theoretical harmonic vibrational frequencies (cm⁻¹), their assignments and relative intensities (km/mol) of the N–H stretching modes of phenylenediamine monomers and their corresponding clusters calculated at the ω B97X-D/6-311++g(d,p) level of theory.

Geometry	Assignment	$\nu_{\text{N-H}}$	IR intensity	Raman intensity
	Vas	3670	151	20
opd	ν_{s}	3563	69	259
	ν _s	3561	21	72
	Vas	3639	72	97
	Vas	3638	29	127
opdd2	ν_{s}	3480	800	7
	ν _s	3462	122	100
	v_{s}	3461	122	100
nnd	Vas	3693	939	105
ppa	ν_{s}	3596	228	366
	Vas	3690	201	114
ppdd3	Vas	3672	68	12
	ν _s	3595	161	487
	ν_{s}	3590	390	288
mnd	Vas	3711	173	66
mpa	Vas	3610	221	319
	Vas	3711	361	66
	v_{as}	3699	184	52
	Vas	3695	153	54
mpdd3	v_{as}	3673	128	22
	ν_{s}	3597	159	204
	v_{s}	3593	530	226
	ν_{s}	3584	230	96

Symmetric N-H stretching (3593 cm⁻¹) C-H stretching involved in C-H···π interaction (3190 cm⁻¹) N-H stretching involved in N-H···π interaction (3699 cm⁻¹)

Fig. S5 The normal modes of N–H stretches of the pdd clusters calculated at the ω B97X-D/6-311++G(d,p) level of theory.