
Electronic Supporting Information

Investigation of Cucurbit[7]uril Complexation on Photophysical and Acid-Base Properties of an Antimalaria Drug Quinine

Suman Mallick, Kaushik Pal, Falguni Chandra and Apurba L. Koner*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.

Corresponding Author: * E-mail: *akoner@iiserb.ac.in*, Fax: +91-755 6692 392; Tel: +91-755 6692 376.

Fig S1: Job's plot showing a maximum around 0.66 mole fraction, corresponds to 2:1 complexation.

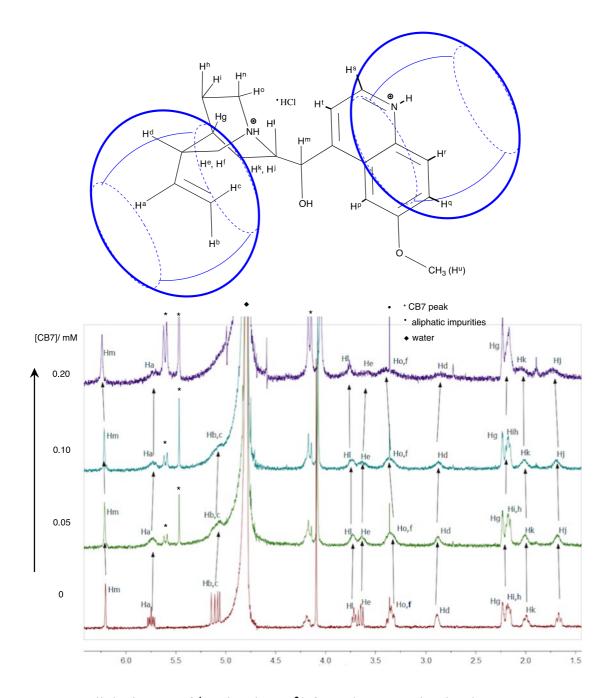
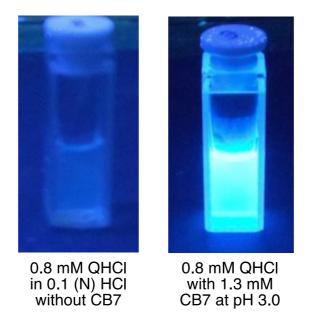
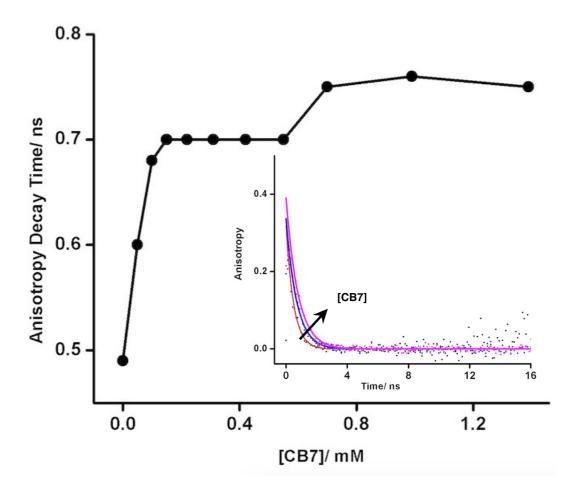




Fig S2: Aliphatic part of ¹H signal QH_2^{2+} from the NMR titration between 0.5 mM QH_2^{2+} and increasing concentration of CB7. Arrow shows complexation-induced chemical shift upon complexation with CB7.

Fig S3: Digital photograph of 0.8 mM Quinine Hydrochloride at 0.1 (N) HCl and the solution containing 1.3 mM CB7 at pH 3.0 showing complexation induced fluorescence enhancement under hand-held UV (365 nm) light.

Fig S4: Plot of time-resolved fluorescence anisotropy decay time with increasing concentration of CB7 at pH 2.7 Stepwise changes in fluorescence anisotropy decay time indicate a 2:1 complexation with Quinine and CB7. Inset shows time-resolved anisotropy decay with increasing concentration of CB7.

2:1 equation for the determination of binding constants using UV-Vis and fluorescence titration

$$OD = \varepsilon_{Q}[Q] + \varepsilon_{CB7 \cdot Q}[CB7 \cdot Q] + {\varepsilon_{[(CB7)_{2} \cdot Q]}} [(CB7)_{2} \cdot Q]$$

and

$$Intensity = {}^{I}q[Q] + {}^{I}{}^{CB7\cdot Q} [CB7\cdot Q] + {}^{I}{}^{(CB7)}{}_{2} \cdot {}^{Q}[(CB7)_{2} \cdot Q],$$

$$Where [Q] = \frac{[Q]_{0}}{1 + K_{1}[CB7] + K_{1}K_{2}[CB7]^{2}}$$

$$[CB7\cdot Q] = \frac{K_{1}[CB7][Q]_{0}}{1 + K_{1}[CB7] + K_{1}K_{2}[CB7]^{2}}$$

$$[(CB7)_{2} \cdot Q] = \frac{K_{1}K_{2}[CB7]^{2}[Q]_{0}}{1 + K_{1}[CB7] + K_{1}K_{2}[CB7]^{2}}$$

$$K_{1}K_{2}[CB7]^{3} + K_{1}(2K_{2}[Q]_{0} - K_{2}[CB7]_{0} + 1)[CB7]^{2} + (K_{1}[Q]_{0} - K_{1}[CB7]_{0} + 1)[CB7] - [CB7]_{0} = 0$$

by solving this cubic equation we can find out K_1 and K_2

Estimating pK_a shift from the binding constant values of protonated and nonprotonated dye with host molecule.

 $log[(K_1K_2)_{pH=2.7}/(K_1K_2)_{pH=9.0}] = \Delta pK_a$, $K_1K_{2=}$ overall binding strength, $(K_1K_2)_{pH=2.7} =$ overall binding strength of the doubly protonated Quinine and $(K_1K_2)_{pH=9.0} =$ overall binding strength of the mono-protonated Quinine

Fluorescence lifetime values of Quinine with and without CB7 along with fitting parameters

λ _{mon} (nm)	$\tau_1(ns)$	$\tau_2(ns)$	a ₁	a ₂	$\tau_{av}(ns)$	χ^2
430	1.5	4.7	5.0	95.0	4.6	1.1
460	-	4.9	-	100	4.9	1.1
490	0.4	4.8	-7.0	107.0	4.8	1.2

Table S1: Fluorescence lifetime of QH_2^{2+} at pH ~ 2.2 by exciting at 280 nm

Table S2: Fluorescence lifetime of $QH^{+}at\ pH \sim 9.0$ by exciting at 280 nm

λ _{mon} (nm)	$ au_1$ (ns)	$ au_2$ (ns)	τ ₃ (ns)	a ₁	a ₂	a ₃	$\tau_{av}(ns)$	χ ²
380	2.3	0.2	5.0	55.0	-5.0	50.0	4.1	1.2
460	5.1	0.4	16.4	52.3	-4.3	52.0	13.7	1.0

λ _{mon} (nm)	$\tau_1(ns)$	$ au_2$ (ns)	a ₁	a ₂	$ au_{avg}(ns)$	χ^2
430	4.9	30.6	4.6	95.4	30.4	1.1
460	11.7	31.2	6.9	93.1	30.7	1.0
490	16.8	31.8	13.5	86.5	30.6	1.0

Table S3: Fluorescence lifetime of ${\rm QH_2}^{2+}$ in presence of 1.5 mM CB7 at pH 2.2 by exciting at 375 nm

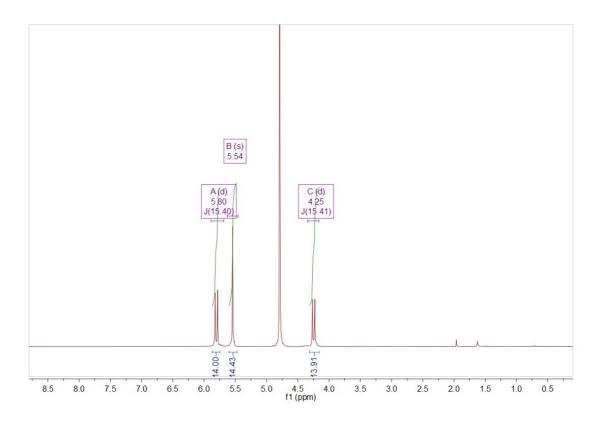
Table S4: Fluorescence lifetime of QH^+ in presence of 1.5 mM CB7 at pH 10.5 by exciting at 375 nm

λ_{mon} (nm)	τ_1 (ns)	$ au_2$ (ns)	a ₁	a ₂	$ au_{avg}(ns)$	χ^2
380	3.3	8.3	88.8	11.2	4.5	1.0
460	4.3	20.7	23.0	77.0	19.7	1.1

Table S5: Fluorescence lifetime of QH_2^{2+} at pH ~2.2 by exciting at 340 nm

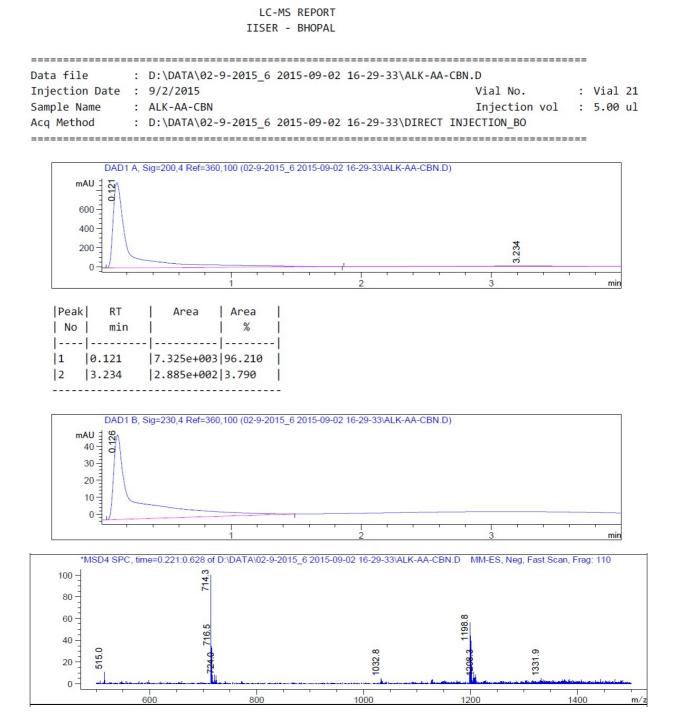
$\lambda_{mon} (nm)$	τ_1 (ns)	a ₁	$\tau_{av}(ns)$	χ ²
460	4.9	100	4.9	1.1

Table S6: Fluorescence lifetime of ${\rm QH_2}^{2+}$ in presence of 1.4 mM CB7 at pH ~ 2.2 exiting at 340 nm


λ_{mon} (nm)	$\tau_1(ns)$	$ au_2$ (ns)	a 1	a ₂	$ au_{avg}(ns)$	χ^2
460	6.8	30.3	6.5	93.5	30.1	1.1

$\lambda_{mon} (nm)$	τ_1 (ns)	τ_2 (ns)	τ_3 (ns)	a ₁	a ₂	a ₃	$ au_{av}(ns)$	χ ²
460	0.8	7.0	0.2	19.6	29.6	50.8	6.3	1.1

Table S8: Fluorescence lifetime of QH⁺ in presence of 1.5 mM CB7 at pH 12.5 by exciting at 340 nm


$\lambda_{mon} (nm)$	τ_1 (ns)	τ_2 (ns)	τ ₃ (ns)	a 1	a ₂	a 3	$ au_{av}(ns)$	χ ²
460	3.7	19.6	0.1	16.8	70.8	12.4	18.9	1.1

¹H NMR of Cucurbit[7]uril

¹H NMR (400MHz, D₂O) : δ (ppm) 5.80 (d, 14H, J=15.40Hz), 5.54 (s, 14H), 4.25 (d, 1H, J=15.41Hz)

Low Resolution Mass Spectrometry of Cucurbit[7]uril

Molecular mass [M] calculated for Cucurbit[7]uril = 1162.34,

mass obtained = $1198.8 [M+2H_2O]$