SUPPLEMENTARY INFORMATION

Supramolecular organization of perfluorinated 1*H*-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies

María Mar Quesada-Moreno,^a Juan Ramón Avilés-Moreno,^b Juan Jesús López-González,*^a Kane Jacob,^{c,d} Laure Vendier,^{c,d} Michel Etienne,^{c,d} Ibon Alkorta,^e José Elguero^e and Rosa Mª Claramunt^f

^a Grupo de Investigación Química Física Teórica y Experimental (FQM-173), Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Las Lagunillas, E-23071 Jaén, Spain.

^b Departamento de Sistemas Físicos, Químicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera Km 1, E-41013 Sevilla, Spain

^c Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.

^d Université de Toulouse, UPS, INPT, LCC, 31077 Toulouse Cedex 4, France.

^e Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain

^f Grupo de Investigación Sistemas Supramoleculares Bioorgánicos, Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey, 4, E-28040 Madrid, Spain

*Author to whom correspondence should be addressed.

JJLG) email: jjlopez@ujaen.es

Compound 2

Monomer

Compound 3

Dimer

Trimer

Tetramer

Pentamer

Figure 1S. Molecular structures of the monomers, dimers, trimers, tetramers and pentamers of compounds **2** and **3**.

Figure 2S. Experimental (top) and scaled predicted (bottom) IR spectra of compounds **2** (panel a) and **3** (panel b) in the 2000-700 cm⁻¹ spectral region. Scaling frequency factor of 0.96. Lorentzian function, pitch = 1 cm^{-1} , FWHM (Full Width Half Maximum) = 4 cm^{-1} .

Figure 3S. Experimental (top) and scaled predicted (bottom) Raman spectra of compounds **2** (panel a) and **3** (panel b) in the 2000-700 cm⁻¹ spectral region. Scaling frequency factor of 0.96. Lorentzian function, pitch = 1 cm⁻¹, FWHM (Full Width Half Maximum) = 4 cm⁻¹.

Figure 4S. Experimental and scaled predicted FarIR and Raman spectra of the monomers, dimers, trimers, tetramers and pentamers of compounds **2** (panel a) and **3** (panel b) in the solid phase (powder) in the 700-30 cm⁻¹ spectral region. Scaling frequency factor of 0.99. Lorentzian function, pitch = 1 cm^{-1} , FWHM (Full Width Half Maximum) = 4 cm^{-1} .

Figure 5S. Experimental and theoretical IR spectra (top) and experimental (top and bottom middle) and theoretical (bottom) VCD spectra of compound **2** in nujol mull in the 1215-900 cm⁻¹ spectral region. In the bottom middle graphic, the raw VCD spectra were corrected by subtracting nujol signals. The average of these two VCD spectra provides the baseline, which was subtracted from them giving the baseline corrected VCD spectra shown in the top middle graphic. Theoretical VCD spectra of the dimers, trimers, tetramers and pentamers are shown in the bottom graphic. Scaling frequency factor of 0.96. Lorentzian function, pitch = 1 cm⁻¹, FWHM (Full Width Half Maximum) = 4 cm⁻¹.

Figure 6S. Experimental and theoretical IR spectra (top) and experimental (top and bottom middle) and theoretical (bottom) VCD spectra of compound **3** in nujol mull in the 1215-900 cm⁻¹ spectral region. In the bottom middle graphic, the raw VCD spectra were corrected by subtracting nujol signals. The average of these two VCD spectra provides the baseline, which was subtracted from them giving the baseline corrected VCD spectra shown in the top middle graphic. Theoretical VCD spectra of the dimers, trimers, tetramers and pentamers are shown in the bottom graphic. Scaling frequency factor of 0.96. Lorentzian function, pitch = 1 cm⁻¹, FWHM (Full Width Half Maximum) = 4 cm⁻¹.

Mol	Atom	Exp	Calc	dummy N2	dummy N1H
1	C3	136.2	136.8	0	0
	C3a	106.3	108.1	0	0
	C4	139.0	142.0	0	0
	C5	139.0	139.9	0	0
	C6	139.0	143.4	0	0
	C7	133.0	135.0	0	0
	C7a	128.1	127.2	0	0
	CF3	120.0	124.9	0	0
	N1H	-200.0	-216.9	0	1
	N2	-81.9	-60.9	1	0
	F4	-141.2	-136.7	0	0
	F5	-160.5	-159.9	0	0
	F6	-154.5	-151.4	0	0
	F7	-156.7	-161.9	0	0
	CF3	-62.7	-60.8	0	0
2	C3	129.3	136.2	0	0
	C3a	108.1	109.2	0	0
	C4	133.7	142.2	0	0
	C5	133.7	140.2	0	0
	C6	133.7	143.3	0	0
	C7	129.3	133.9	0	0
	C7a	129.3	127.0	0	0
	CF2	108.1	114.0	0	0
	CF3	129.3	123.4	0	0
	N1H	-195.6	-213.4	0	1
	N2	-76.9	-56.2	1	0
	F4	-138.6	-134.1	0	0
	F5	-155.7	-159.4	0	0
	F6	-151.9	-151.9	0	0
	F7	-159.4	-161.6	0	0
	CF2 a1	-111.5	-109.3	0	0
	CF2 a2	-118.4	-116.0	0	0
	CF3	-84.2	-84.1	0	0
3	C3	134.0	135.9	0	0
	C3a	108.4	109.8	0	0
	C4	134.0	141.4	0	0
	C5	134.0	140.1	0	0
	C6	134.0	143.0	0	0
	C7	127.8	134.1	0	0
	C7a	127.8	126.7	0	0
	CF2	109.7	116.4	0	0
	CF2	108.4	112.5	0	0
	CF3	127.8	122.6	0	0
	N1H	-195.9	-213.0	0	1
	N2	-71.6	-55.8	1	0
	CF2 a1	-111.7	-107.7	0	0
	CF2 a2	-113.8	-111.0	0	0
	CF2 b	-123.9	-123.6	0	0
	CF3	-79.4	-78.4	0	0

Table 15. Comparison of experimental and calculated chemical shifts (ppm) and presence (1)/absence (0) data matrix.

]
2	2_b3lyp_giao		
Total Energy= -1351.98649306 Hartree, NIMAG= 0	*******		
C,-1.1491969655,11.3708080723,0.6634079952	Atom	Abs.	Rel.
C,-2.2321520603,11.0243064868,1.5405748673	1C	40.99	136.23
C,-3.109299187,9.9457545876,1.74240429	2C	69.07	109.19
C,-4.0569287611,10.0276414676,2.7406883678	3C	34.82	142.16
C,-4.1615924254,11.1727381716,3.5599786326	4C	36.87	140.19
C,-3.3151013196,12.2441636593,3.3847623823	5C	33.68	143.27
C,-2.3549671073,12.1598249532,2.375063315	6C	43.37	133.94
C,-0.5279644684,10.5702484818,-0.4476698444	7C	50.57	127.00
C,0.5276080651,9.5289124287,0.0338371241	8C	64.13	113.95
N,-1.3939389839,13.0397246714,1.9682692432	9C	54.26	123.45
н,-1.1988212192,13.9599240725,2.3304866726	10N	64.85	-213.35
N,-0.6716952674,12.5670359809,0.9408493333	11H	22.35	9.32
F,-3.0470247512,8.8422067592,0.9957537702	12N	-101.25	-56.22
F,-4.9034663228,9.01610056,2.9562644627	13F	308.84	-134.08
F, -5, 0972346353, 11, 1980586616, 4, 5096329311	14F	335.25	-159.41
F, -3, 4036912825, 13, 3390036578, 4, 1572339809	15F	327.43	-151.91
F1, 4915103465, 9, 8801098144, -1, 1203468611	16F	337.55	-161.61
F.0 0983947687.11 38454958921 3302919702	17F	282 99	-109 29
$F_{-0} = 0.0248743896.8 6846046945.0 9204610091$	18F	289 96	-115 97
F = 0.9965672155 = 8.8179091925 = 0.995010367	195	253 75	-81 25
F = 1 - 5540040485 = 10 - 1518848627 = 0.6283365114	205	262 51	-89 65
1,1.3340040403,10.1310040027,0.0203303114	215	254 06	_91 54
	211	234.00	-01.34
	3_b3lyp_g1ao		
Total Energy= -1589.84212674 Hartree, NIMAG= 0	******		-
C,0.8535062524,5.7228349773,2.2734460588	Atom	Abs.	Rel.
C,0.1034027948,4.5019716089,2.3651504176	1C	41.30	135.93
C,-0.0014300118,3.4036239934,3.2341475535	2C	68.39	109.84
C,-0.8829864974,2.3878356857,2.9304149338	3C	35.62	141.39
C,-1.6803459528,2.4333106664,1.7660607691	4C	36.99	140.07
C,-1.6000241214,3.4990601602,0.8981656771	5C	34.01	142.95
C,-0.7076376045,4.5270569435,1.2068167879	6C	43.19	134.11
C,1.8894947716,6.2794423144,3.2116398543	7C	50.90	126.68
C,1.2644185187,7.0475313035,4.4230812434	8C	61.55	116.43
C,2.2481498859,7.5142678584,5.5421131533	9C	65.64	112.49
N,-0.408342134,5.6889485709,0.5551466964	10C	55.11	122.63
H,-0.7882313964,6.0316345438,-0.3133977792	11N	64.50	-213.01
N,0.5282588423,6.4057327257,1.1944974367	12H	22.34	9.33
F,0.727916856,3.3189694281,4.3479812697	13N	-101.74	-55.76
F,-1.0035614899,1.3310499528,3.739470825	14F	308.77	-134.01
F,-2.5162882768,1.4235910981,1.5215517431	15F	335.59	-159.73
F,-2.353706894,3.5551948686,-0.2116497719	16F	328.05	-152.50
F,2.7053537622,7.1392774888,2.5569389525	17F	338.50	-162.52
F,2.6567272601,5.265205043,3.7048252341	18F	284.73	-110.96
F, 0. 633873853, 8. 143784373, 3. 9454953675	19F	281.34	-107.70
F, 0.3397844546, 6.2462745249, 5.0092592362	20F	297.73	-123.42
F.1.5702568636.8.2492251179.6.4342826306	21F	298.18	-123.85
F. 3, 2314839106.8, 2641341437.5, 0345769788	22F	251 51	-79,10
F.2.7835787639.6.4685418267.6.1770738748	2.3F	251 83	-79,40
2,2,	245	249 14	-76.83

Table 2S. Geometry, energy and NMR parameters for **2** and **3** calculated at B3LYP/6-311++G(d,p) computational level.