Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information:

Simulations of Water Exchange Dynamics on Lanthanide Ions in 1-Ethyl-3-Methylimidazolim Ethyl Sulfate ([EMIm][EtSO₄]) Ionic Liquid and Water

Yi-Jung Tu, Matthew J. Allen, G. Andrés Cisneros*

Department of Chemistry, Wayne State University, Detroit, Michigan, USA, 48202

A. Intra-molecular parameters for [EMIm]

1. Bonds

Bond	AMOEBA		MP2
	K _b , kcal/mol	r _{b0} , Å	r _{b0} , Å
C1-N6,7	653.90	1.3450	1.338
C1-H19	370.50	1.0810	1.076
C2,3-N6,7	653.90	1.3450	1.372
C2-C3	539.60	1.3520	1.374
С2,3-Н4,5	370.50	1.0810	1.078
N6,7-C8,12	399.70	1.4487	1.468
С8-Н9,10,11	402.87	1.0911	1.090
С12-Н13,14	402.87	1.0911	1.092
C12-C15	385.10	1.4980	1.517
С15-Н16,17,18	385.00	1.1120	1.092

2. Bond angle bending

Angle	AMOEBA		MP2
	K_{e} , kcal/mol rad ²	Θ_0 (degree)	Θ_0 (degree)
N6-C1-N7	28.78	112.10	108.4
C1,1-N6,7-C2,3	86.03	107.85	108.9
C1,1-N6,7-C8,12	67.19	124.04	124.7
C2-C3-N7	47.48	107.00	106.9
C3-C2-N6	47.48	107.00	106.8
C2,3-N6,7-C8,12	67.19	124.04	125.8
N6,7-C1,1-H19	38.13	122.50	125.7

N6-C8-H9,10,11	51.66	105.53	108.3	
H9-C8-H10	32.07	112.24	110.6	
N7-C12-C15	79.47	111.24	111.9	
N7-C12-H13,14	32.07	112.24	106.3	
H13,14-C12-C15	38.12	109.66	110.8	
H13-C12-H14	32.07	112.24	110.7	
С12-С15-Н16,17,18	39.49	107.23	110.0	
H16-C15-H18	40.57	107.60	108.9	

3. Torsions

	Amplitude	Phase 1	Amplitude	Phase 2	Amplitude	Phase 3
C1-N6-N2-N3	0	0	14.000	180	0	0
C1-N6-N2-H4	0	0	7.000	180	0	0
N6-C2-C3-N7	0.900	0	15.000	180	0	0
N6-C2-C3-H5	0.755	0	10.000	180	0	0
C2-N6-C1-N7	0	0	15.000	180	0	0
C2-N6-C1-H19	0	0	7.000	180	0	0
C8-N6-C2-C3	0	0	4.120	180	0	0
C8-N6-C2-H4	-0.530	0	3.000	180	0	0
C8-N6-C1-H19	-0.530	0	3.000	180	0	0
C8-N6-C1-N7	0	0	4.120	180	0	0
H9,10,11-C8-N6-C1,2	0	0	0	0	0.380	0
C12-N7-C1-N6	0	0	4.120	180	0	0
C12-N7-C1-H19	-0.530	0	3.000	180	0	0
C12-N7-C3-C2	0	0	4.120	180	0	0
С12-N7-С3-Н5	-0.530	0	3.000	180	0	0
H13,14-C12-N7-C1,3	0	0	0	0	0.380	0
C15-C12-N7-C1,3	-0.800	0	-0.100	180	-0.550	0
H16,17,18-C15-C12-N7	0	0	0	0	0.500	0
H16,17,18-C15-C12- H13,14	0	0	0	0	0.238	0

4. Out of plane deformations

Out of plane deformations	K _{out}
H5-C3-N7-C2	0.59
H4-C2-N6-C3	0.59
H19-C1-N7-N6	0.59

B. Intra-molecular parameters for [EtSO₄]

1. Bonds

Bond	AMOEBA		MP2
	K _b , kcal/mol	r _{b0} , Å	r _{b0} , Å
S1-O2,3,4	570.00	1.4780	1.466
S1-O5	605.58	1.6698	1.688
O5-C6	464.51	1.4154	1.432
С6-Н7,8	399.82	1.0681	1.095
C6-C9	385.22	1.4999	1.517
С9-Н10,11,12	385.00	1.1120	1.093

2. Bends angle bending

Bend	AMOEBA		MP2
	K _a , kcal/mol rad ²	Θ_0	Θ_0
O2-S1-O3	161.37	115.30	115.2
O2,3,4-S1-O5	88.25	103.15	102.9
S1-O5-C6	80.19	114.49	114.1
О5-С6-Н7,8	54.32	106.25	107.9
Н7-С6-Н8	32.66	107.67	107.9
O5-C6-C9	88.02	110.78	111.1
С6-С9-Н10,11,12	38.57	109.12	110.0
H10-C9-H11	40.57	107.60	108.9

3. Torsions

	Amplitude	Phase 1	Amplitude	Phase 2	Amplitude	Phase 3
S1-O5-C6-C9	-1.437	0	-0.744	180	0.357	0
S1-O5-C6-H7,8	0	0	0	0	0.403	0
O2,3,4-S1-O5-C6	0	0	0	0	0.590	0
O5-C6-C9-H10,11,12	0	0	0	0	0.495	0
H7,8-C6-C9-H10,11,12	0	0	0	0	0.238	0

C. Inter-molecular parameters for [EMIm][EtSO₄]

Optimized geometry for [EMIm]	Ν	Name	Axis type	Ζ	Х	Y
	1	С	Bisector	6	7	0
17	2	С	Z-then-X	6	3	0
16 15 .8 19 11	3	С	Z-then-X	7	2	0
	4	Н	Z-then-X	2	6	0
14 12 1 8 10	5	Н	Z-then-X	3	7	0
13 7 6 9	6	Ν	Z-then-X	1	2	0
3 - 2	7	Ν	Z-then-X	1	3	0
	8	С	Z-then-X	6	9	0
	9	Н	Z-then-X	8	6	0
	10	Н	Z-then-X	8	6	0
	11	Н	Z-then-X	8	6	0
	12	С	Z-then-X	7	15	0
	13	Н	Z-then-X	12	7	0
	14	Н	Z-then-X	12	7	0
	15	С	Z-then-X	12	16	0
	16	Н	Z-then-X	15	12	0
	17	Н	Z-then-X	15	12	0
	18	Н	Z-then-X	15	12	0
	19	Н	Z-then-X	1	6	0

2. Definition of [EtSO₄] local frame for multipole GEM-DM

Optimized geometry for [EMIm]	N	Name	Axis type	Ζ	Х	Y
	1	S	Z-then-X	2	3	0
	2	0	Z-then-X	1	2	0
	3	0	Z-then-X	1	2	0
	4	0	Z-then-X	1	2	0
	5	0	Z-then-X	1	6	0
	6	С	Z-then-X	5	9	0
6	7	Н	Z-then-X	6	5	0
8 12	8	Н	Z-then-X	6	5	0
	9	С	Z-then-X	6	10	0
	10	Н	Z-then-X	9	6	0
	11	Н	Z-then-X	9	6	0
	12	Н	Z-then-X	9	6	0

3. GEM-DM multipoles for [EMIm] (4G)^a

17	Local frame d	efinition				Permanent	nultipoles
16 15 8 19 11	Multipoles Atom Type	atom T1	1 aton T2	n2 atom T3	13	q Dx D <u>y</u> Qxx	y Dz
	Requirements	· Oxx+O	vv+Ozz=	=0		Qxy Q Qxz Q	yy yz Qzz
	Where q, D, Q) are the	point cha	arge, dipol	e, and quad	lrupole, resp	ectively
	Bisector-then- T1 T2 -T3	·X					
	Results from	the fittin	g to the e	electrostat	ic potential	(EP)	
	multipole	1	6	7	0.41689)	
	Atom Type	351	-354	-354	-0.16792 -0.83832	0.08646	-0.48509
					-0.16931	-0.71924	
					0.21953	0.45075	1.55756
	multipole	2	6	3	0.31536	,)	
	Atom Type	352	354	352	-0.58570	0.06193	-0.12795
					-0.14986	, , , , , , , , , , , , , , , , , , , ,	
					0.26184	-0.22330	0 37316
					1.17425	-0.21140	0.57510
	multipole	4	2	6	-0.19224	ļ	
	Atom Type	353	352	354	0.02833	0.00044	-0.30489
					0.14427	-0 04460	
					-0.09714	0.00541	-0.09967
	multipole	6	1	2	0.03706	,	
	Atom Type	354	351	352	-0.08903	0.14053	0.04527
					-0.00508	0 (2020	
					-0.00066	0.62938	-0 62430
					0.00000	0.22070	0.02.00
	multipole	8	6	9	0.56495		
	Atom Type	355	354	356	0.02283	0.06216	0.08695
					-0.45032	0.10659	
					0.05749	-0.14183	-0.30591
	141-1	0	0	6	0 10274		
	Atom Type	356	8 355	6 354	-0.102/4	0.00658	-0 34946
	Atom Type	550	555	554	0.19526	0.00058	-0.34740
					-0.03567	0.07322	
					-0.12395	0.01216	-0.26848
	multipole	12	7	15	0.50303		
	Atom Type	357	354	359	0.04646	0.03781	0.18524
					-0.93077		
					0.94546	0 1.17660	0 24502
					0.74281	-0.40468	-0.24383

			_			
multipole	13	12	7	-0.15230		
Atom Type	358	357	354	-0.05449	0.05883	-0.52850
				0.25596		
				0.01999	0.30735	
				-0.12977	-0.06216	-0.56330
multipole	15	12	16	0.46549		
Atom Type	359	357	360	-0.21296	-0.36438	-0.08871
51				0.95255		
				0.27236	-0.06369	
				-0.18626	0.01045	-0 88886
				0.10020	0.01010	0.00000
multipole	16	15	12	-0.12116		
Atom Type	360	359	357	0.00535	-0.02861	-0.34059
JI JI				0.27696		
				-0.07650	0.05101	
				0.00753	0.08168	-0 32797
				0.00700	0.00100	0.02797
multipole	19	1	6	-0.29442		
Atom Type	361	351	354	0.00013	0.04186	-0.29608
JI JI				0.10931		
				0.08112	0.02100	
				-0.31807	-0.04714	-0 13031
				0.51007	0.01/11	0.15051
polarize	351			1.334	354	361
polarize	352			1.334	353	354
polarize	353			0.496	352	
polarize	354			1.073	351	352
polarize	355			1.334	356	
polarize	356			0.496	355	
polarize	357			1 334	358	
polarize	358			0 496	357	
polarize	359			1 334	360	
polarize	360			0.496	359	
polarize	361			0.496	351	
polarize	501			0.490	551	

^a 4G indicates four polarizable groups

4. GEM-DM multipoles for [EtSO₄] (4G)^a

	Local frame of	lefinition				Permanent	t multipoles
	Multipoles ATOM TYPI	atom E T1	1 ato T2	m2 ato T3	m3	q Dx I Qxx	Dy Dz
2 9 9	Requirements	s: Qxx+Q	yy+Qzz	z=0		Qxy Qxz Q	Qyy Qyz Qzz
8 6 12	Where q, D, 0	Q are the	point ch	arge, dip	ole, and qua	drupole, res	pectively
	Bisector-then T1 T2 -T3	-X					
	Results from the fitting to the electrostatic potential (EP)						
	multipole	1	2	3			
	Atom Type	362	363	363	2.13865	i	
					-0.37750	0.2377	1 0.03617
					-0.20081	0.2510	0
					-0 37888	-0 1779	9 5 -0.05108
					0.57000	0.1775	0.00100
	multipole	2	1	2	-0.93408	5	
	Atom Type	363	362	363	0.12712	0.0935	1 -0.29322
					-0.09824	0.0022	2
					-0.01188	-0.0833	5 2 0.18156
					0.01702	0.1050	2 0.10120
	multipole	5	1	6	-0.31293		
	Atom Type	364	362	365	0.72255	-0.0949	3 0.04881
					0.27339) _0 7720	5
					-1.56949	-1.5909	6 0.49956
	multipole	6	5	9	0.24070)	
	Atom Type	365	364	367	-0.17935	0.0113	0 -0.33196
					-0.1/010	0.0783	8
					-0.25144	-0.2411	6 0.09772
	multipole	7	6	5	-0.14156	5	
	Atom Type	366	365	364	0.04591	0.0112	6 0.15443
					-0.36383	-0.1514	0
					-0.13517	-0.0900	4 0.51532
	multipole	9	6	10	0.26365		
	Atom Type	367	365	368	-0.11750	0.1596	/ 0.62775
					-0.56/2/ 0.05343	-0 1056	4
					-0.22792	0.0307	6 0.67291
	multipole	10	9	6	-0.08157	0.000	0 1 1 - 0 -
	Atom Type	368	367	365	-0.04615	-0.0023	3 -0.14585
					0.014/0	0.0685	3
					0.00129	0.0030	3 -0.08323
						2.0000	

polarize	362	3.300	363
polarize	363	0.837	362
polarize	364	0.837	
polarize	365	1.334	366
polarize	366	0.496	365
polarize	367	1.334	368
polarize	368	0.496	367

^a 4G indicates four polarizable groups

5. Optimal λ parameters and the corresponding auxiliary basis sets from the fitting results

	Analytical, λ	auxiliary basis sets	Total charge, e
[EMIm]	0.014	A2DG for H, C, N atoms	+1.0
[EtSO ₄]	0.003	A2DG for H, C, and O atoms; A2 for the S atom	-1.0

6. van der Waals parameters^a for [EMIm]

Atom type	Atom class	R _{min} , Å	ε , kcal/mol
351	92	3.7800	0.1010
352	92	3.7800	0.1010
353	93	3.0000	0.0240
354	91	3.7100	0.1050
355	102	3.820	0.1010
356	42	2.9800	0.0240
357	102	3.820	0.1010
358	42	2.9800	0.0240
359	40	3.8200	0.1010
360	41	2.9600	0.0240
361	93	3.0000	0.0240

^aAll parameters were taken from the parameter list of AMOEBA force field.

7. van der Waals parameters^a for [EtSO₄]

Atom type	Atom class	R _{min} , Å	ε, kcal/mol
362	76	3.8930	0.4370
363	77	3.4930	0.1530
364	103	3.393	0.1240
365	104	3.818	0.1100
366	105	2.780	0.0280
367	40	3.8200	0.1010

368	41	2.9600	0.0240

^a parameters of atom types 367 and 368 were taken from the parameter list of AMOEBA force field, and parameters for atom types 362–366 were obtained after the van der Waals fitting.¹

D. AMOEBA intermolecular interaction energies for [EMIm][EtSO₄] ionic pair

Comparison of interaction energies for $[EMIm][EtSO_4]$ ionic pair using GEM-DM multipole force fields with ab initio data from MP2/6-311G(d,p) level. (a) Total intermolecular interaction energy, (b) Coulomb energy, (c) Polarization energy, and (d) van der Waals energy.

E. Density and heat of vaporization of [EMIm][EtSO₄] at 298 K

	MD simulation	Experiments
Density (g/cm ³)	1.240	1.2376^2
Heat of vaporization (kJ/mol)	153.2	152.6; ³ 155.9; ³ 164 ⁴

F. Intermolecular interaction energies for lanthanide-water dimers

	AMOEBA ^a		MP2	
	Ln–O distance	Total interaction	Ln–O distance	Total interaction
$\mathrm{Gd}^{3+}-\mathrm{H}_{2}\mathrm{O}$	2.171	-101.3952	2.179	-111.34
$Dy^{3+}-H_2O$	2.165	-102.3076	2.140	-114.82
$\mathrm{Ho}^{3+}\mathrm{-H_2O}$	2.164	-102.3767	2.136	-114.48

1. Total interaction energies (kcal/mol) of lanthanide-water dimers (Ln-H₂O)

^a The structures of lanthanide-water dimers were optimized by NEWTON in TINKER⁵ program. ^b AMOEBA total interaction energies were calculated using ANALYZE in TINKER program.

2. AMOEBA intermolecular interaction energies

	Total interaction	Coulomb	Polarization	van de Waals	Pol% ^a
$\mathrm{Gd}^{3+}-\mathrm{H}_2\mathrm{O}$	-101.3952	-77.4282	-51.2140	27.2470	50.50%
$Dy^{3+}-H_2O$	-102.3076	-77.8353	-51.4074	26.9351	50.25%
$\mathrm{Ho}^{3+}\mathrm{-H_2O}$	-102.3767	-77.8619	-51.0788	26.5640	49.89%

^a Pol% = (polarization energy / total interaction energy)×100%

G. Self-diffusion coefficients for water molecules and lanthanide ions

1. MSD plots for lanthanide ions in water

The averaged diffusion coefficient of lanthanide ions (D_{Ln}) from three independent simulation trajectories

metal ion	Average slopes of MSD plots (Å ² /ps)	Diffusion coefficient (cm ² /s)	Standard deviation of $D_{Ln} (cm^2/s)$
Gd^{3+}	6.22E-01	1.04E-05	
Dy ³⁺	1.07E-01	1.78E-06	1.90E-06
Ho ³⁺	4.86E-02	8.11E-07	2.69E-06

2. MSD plots for water molecules in water

The averaged diffusion coefficient of lanthanide ions (D_{H2O}) from three independent simulation trajectories

metal ion	Average slopes of MSD plots ($Å^2/ps$)	Diffusion coefficient (cm ² /s)	Standard deviation of D_{H2O} (cm ² /s)
Gd^{3+}	9.73E-01	1.62E-05	
Dy ³⁺	9.76E-01	1.63E-05	4.95E-06
Ho ³⁺	9.53E-01	1.59E-05	2.59E-07

3. MSD plots for lanthanide ions in [EMIm][EtSO₄] obtained from the three independent MD trajectories

The averaged diffusion coefficient of lanthanide ions (D_{Ln}) from three independent simulation trajectories

metal ion	Average slopes of MSD plots ($Å^2/ps$)	Diffusion coefficient (cm ² /s)	Standard deviation of $D_{Ln} (cm^2/s)$
Gd^{3+}	9.881E-06	1.65E-10	5.01E-10
Dy ³⁺	1.080E-05	1.80E-10	7.96E-10
Ho ³⁺	2.019E-05	3.37E-10	3.41E-10

4. MSD plots for water molecules in [EMIm][EtSO₄] obtained from the three independent MD trajectories

The averaged diffusion coefficient of water molecules (D_{H2O}) from three independent simulation trajectories

metal ion	Average slopes of MSD plots (Å ² /ps)	Diffusion coefficient (cm ² /s)	Standard deviation of $D_{H2O} (cm^2/s)$
Gd^{3+}	8.38E-04	1.40E-08	2.42E-08
Dy ³⁺	5.18E-04	8.64E-09	2.04E-08
Ho ³⁺	4.71E-04	7.86E-09	2.24E-08

4. MSD plots for [EtSO₄]⁻ anions in [EMIm][EtSO₄] obtained from the three independent MD trajectories

The averaged diffusion coefficient of $[EtSO_4]^-$ anions (D_{EtSO4}) from three independent simulation trajectories

metal ion	Average slopes of MSD plots (Å ² /ps)	Diffusion coefficient (cm ² /s)	Standard deviation of D_{EtSO4} (cm ² /s)
Gd^{3+}	2.57E-04	4.28E-09	1.32E-08
Dy ³⁺	1.86E-04	3.10E-09	1.07E-08
Ho ³⁺	1.79E-04	2.99E-09	8.10E-09

H. Water-exchange rates of lanthanide ions in water

I. The MD trajectories for lanthanide-water oxygen distance and dihedral angle $\phi(S1-S2-S3-Ln)$ in water/[EMIm][EtSO₄]

mean residence time of a water molecule in the first coordination shell of each lanthanide ion

metal ion	mean residence time (ps)	standard deviation
Gd^{3+}	3984.18	2354.29
Dy ³⁺	2382.37	1161.44
Ho ³⁺	1329.65	1161.57

Reference

1. Burger, S. K.; Cisneros, G. A., Efficient Optimization of van der Waals Parameters from Bulk Properties. *J. Comput. Chem.* **2013**, *34*, 2313–2319.

2. Gomez, E.; Gonzalez, B.; Calvar, N.; Tojo, E.; Dominguez, A., Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. *J. Chem. Eng. Data* **2006**, *51*, 2096–2102.

3. Zaitsau, D. H.; Fumino, K.; Emel'yanenko, V. N.; Yermalayeu, A. V.; Ludwig, R.; Verevkin, S. P., Structure-Property Relationships in Ionic Liquids: A Study of the Anion Dependence in Vaporization Enthalpies of Imidazolium-Based Ionic Liquids. *Chemphyschem.* **2012**, *13*, 1868–1876.

Armstrong, J. P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J., Vapourisation of ionic liquids. *Phys. Chem. Chem. Phys.* 2007, *9*, 982–990.
 Ponder, J. W. *TINKER, Software Tools for Molecular Design, version 5.0*, Washington University: St. Louis, MO, 2004.

Complete citation for the Gaussian program:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. B.
V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.;
Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Salvador, P.; Dannenberg, J. J.; Dapprich,
S.; Parandekar, P. V.; Mayhall, N. J.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Fox, D. J. Gaussian Development Version, Revision H.35 ed.: Gaussian, Inc.: Wallingford CT, 2014.

Complete citation for the AMBER program:

Case, D. A.; Darden, T. A.; Cheatham, T. E., III; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Götz, A. W.; Kolossvafy,I.; Wong,K.F.; Paesani,F.; Vanicek,J.; Wolf,R.M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P. A. *AMBER 12*, University of California: San Francisco, CA, 2012.