Supporting information for

Planarity and multiple components promote organic photovoltaic efficiency by improving electronic transport

Matthew Goldey,* Daniel Reid,† Juan de Pablo,‡ and Giulia Galli

Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, United States

(Dated: August 26, 2016)

^{*} mgoldey@uchicago.edu

 $^{^\}dagger$ danielreid@uchicago.edu

 $[\]ensuremath{^\ddagger}\xspace$ depablo@uchicago.edu

[§] gagalli@uchicago.edu

Reference	Zhao and Yu $^{\rm 1}$	Yang et al. ²	Shin et al. ³	Shin et al. ³	Pook panratana and Richter 4	Song et al. ⁵
PTB7 UPS IP (eV)	4.9	4.93	4.93	5.01	5.04	5.07

Table I: Ultraviolet photoelectron spectroscopy ionization potentials for PTB7

Reference	Zhao and Yu 1
PID UPS IP (eV)	5.4

Table II: Ultraviolet photoelectron spectroscopy ionization potentials for PID2

Reference	PC71BM UPS IP (eV)
Zhao and Yu^1	5.5
Nogimura $et \ al.^6$	5.51
Nogimura $et \ al.^6$	5.55
Nakanishi et al. 7	5.55
Ratcliff <i>et al.</i> ⁸	5.8
Ratcliff <i>et al.</i> ⁸	5.9
Subbiah <i>et al.</i> ⁹	6.0
Yang et al. ²	6.02
Yun <i>et al.</i> ¹⁰	6.22
Yun <i>et al.</i> ¹⁰	6.31

Table III: Ultraviolet photoelectron spectroscopy ionization potentials for PC71BM

Reference	Ratcliff et al. ⁸	Nakanishi $et~al.^7$	Ratcliff et al. ⁸	Nogimura $et \ al.$ ⁶	Yoshida ¹¹	Nogimura et al. 6	Subbiah et al. 9
PC71BM IPS EA (eV)	3.6	3.7	3.7	3.74	3.81	3.88	4.3

Table IV: Inverse photoemission spectroscopy electron affinities for PC71BM

Configuration	E_g (Methyl)	E_g (Hydrogen)
cis-trans	2.28	2.32
cis-cis	1.86	1.82
trans-cis	2.39	2.35
trans-trans	1.95	1.83

Table V: Comparison of B3LYP fundamental gap E_g/eV for PTB7 with different side-chain terminations.

Configuration	E_g (Methyl)	E_g (Hydrogen)
cis-trans	2.51	2.27
cis-cis	2.13	1.93
trans-cis	2.49	2.42
trans-trans	2.02	2.05

Table VI: Comparison of B3LYP fundamental gap E_g/eV for PID2 with different side-chain terminations.

Figure 1: Root mean square displacement of 5-mer PTB7 molecules in the liquid phase at 500 K. Molecules are in the diffusive regime after 10 picoseconds.

Figure 2: Free energies (kcal mol⁻¹) of rotation for a central PTB7 β dihedral (see Figure 1 of the main text) in two different solvents (PTB7 and PID2) at 400 K.

Figure 3: Histogram of α and β dihedrals (absolute values) of the 200 PTB7 configurations used in Section 3.3.

- $^1\,$ D. Zhao and L. Yu, $\,$ (2016), unpublished work.
- ² Q.-D. Yang, H.-W. Li, Y. Cheng, Z. Guan, T. Liu, T.-W. Ng, C.-S. Lee, and S.-W. Tsang, ACS Appl. Mater. Interfaces 8, 7283 (2016).
- ³ D. Shin, J. Lee, S. Park, J. Jeong, K.-W. Seo, H.-J. Kim, H.-K. Kim, M.-J. Choi, K.-B. Chung, and Y. Yi, Appl. Phys. Express 8, 095701 (2015).
- ⁴ S. Pookpanratana and L. Richter, (2016), unpublished work.
- ⁵ C. K. Song, B. J. Eckstein, T. L. D. Tam, L. Trahey, and T. J. Marks, ACS Appl. Mater. Interfaces 6, 19347 (2014).
- ⁶ A. Nogimura, K. Akaike, R. Nakanishi, R. Eguchi, and K. Kanai, Org. Electron. 14, 3222 (2013).
- ⁷ R. Nakanishi, A. Nogimura, R. Eguchi, and K. Kanai, Org. Electron. **15**, 2912 (2014).
- ⁸ E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, Org. Electron. **13**, 744 (2012).
- ⁹ J. Subbiah, C. M. Amb, I. Irfan, Y. Gao, J. R. Reynolds, and F. So, ACS Appl. Mater. Interfaces 4, 866 (2012).
- ¹⁰ D.-J. Yun, J. Chung, C. Jung, Y. Chung, S. Kim, S. Lee, K.-H. Kim, H. Han, G.-S. Park, and S. Park, J. Appl. Phys. **114**, 094510 (2013).
- ¹¹ H. Yoshida, J. Phys. Chem. C **118**, 24377 (2014).