Supporting Information for Dynamics and Quantum Yields for CHBrCl₂

Photodissociation from 215–265 nm

Wyatt G. Merrill, F. Fleming Crim, and Amanda S. Case

Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, 53706, USA

CONTENTS

A. Fits for beta parameter at each wavelength for both channels	pg. 2
B. Wavelength-dependent data for various alkyl halides	pg. 3
C. Measured internal energy and modeled rotational energy for CHCl_2	pg. 4
D. Geometry optimizations used for impulsive modeling	pg. 5

Degrees from laser polarization

Figure S1 Angular distributions of intensity from VMI data at most probable translational energy for each photolysis wavelength employed. The vertical axis gives image intensity as a function of the angle away from the electric field polarization of the photolysis laser. All data was fit with equation 6 (red line) and beta parameters were extracted from the individual fits.

B. Wavelength-dependent data for various alkyl halides

Figure S2 Wavelength dependence of data averaged for Figure 6. Experimental data taken from various other studies on similar alkyl halides: CH₃CH₂I^{18,48,61-63} (purple), CH₂ClBr^{25,26,29,33,36} (blue), ICH₂Cl^{31,34} (green), CHCl₂Br (this work, orange), and CH₂I₂²⁸ (red). Open markers denote dissociations leading to spin-excited halogen fragments, and closed markers denote ground-state halogen fragments. Predictions of translational energy partitioning from the soft impulsive model⁶³ are shown with hash marks on the right-hand vertical axis.

C. Measured internal energy and modeled rotational energy for CHCl₂

Figure S3 Wavelength dependence of measured internal energy (closed circles) and modeled rotational energy (open squares). Bars on measured data indicate the full-width, half-maximum spread of the internal energy. Modeled data assumes no vibrational excitation (rigid model).

D. Geometry optimizations used for impulsive modeling

The CHBrCl₂ geometry was optimized at the B3LYP level of theory with an aug-cc-pVTZ basis. The xyz coordinates (in Angstroms) are:

С	0.00000000	0.00000000	0.00000000
н	0.90340200	0.59060400	0.00000000
Cl	0.00000000	-1.00026400	1.46858200
Cl	0.00000000	-1.00026400	-1.46858200
Br	-1.48869400	1.26896000	0.00000000

The ICH₂Cl geometry was optimized at the B3LYP level of theory with 6-311++G(3df,3pd) basis for the C, H, and Cl atoms and a LanL2DZ basis for the I atom (as is consistent with Cheng and coworkers). The xyz coordinates (in Angstroms) are:

- C -1.0516232795 0.8916619626 0.0000005149
- I 0.9087821748 -0.0509807772 -0.0000013228
- H -1.0960169952 1.4897122106 -0.8986818834
- H -1.0960198857 1.4897141230 0.8986826823
- Cl -2.4021719577 -0.2511362588 0.000000091