Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supplementary materials

The possible formation of magnetic FeS₂ phase in two-dimensional MoS₂ matrix

L.Yu. Antipina^{1,2,3}, A.G. Kvashnin, ^{1,4} P.B. Sorokin^{1,2,3}, L.A. Chernozatonskii¹

¹ Emanuel Institute of Biochemical Physics, Russian Academy of Science., 4 Kosigin Street,

Moscow, 119334, Russian Federation

² Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow, 142190, Russian Federation

³ National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation

⁴ Skolkovo Institute of Science and Technology (Skoltech), Skolkovo Innovation Center 143026, 3 Nobel Street, Moscow, Russian Federation

Corresponding author. E.mail: cherno@sky.chph.ras.ru

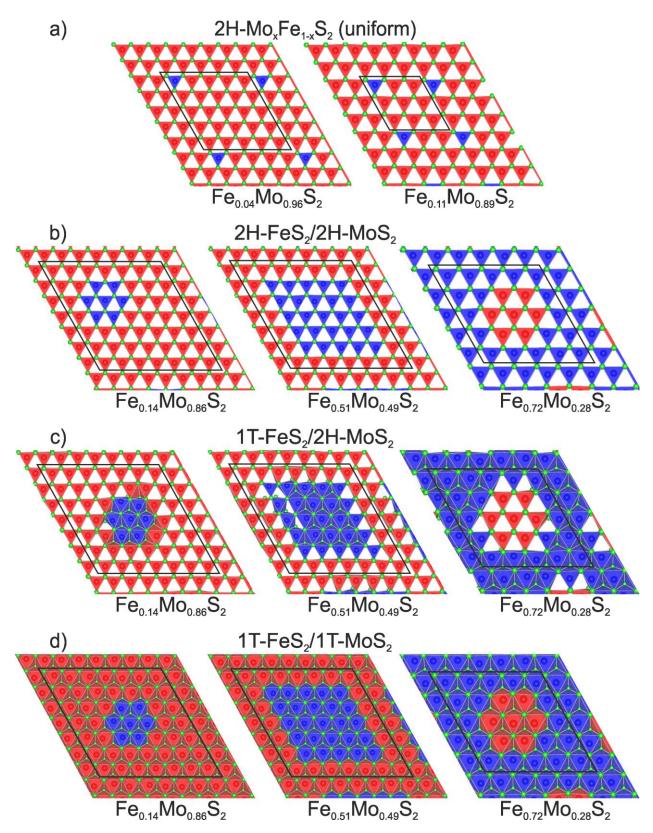


Figure S 1 – The chosen atomic geometries of cluster FeS $_2$ in MoS $_2$ structure for different concentration. a) 2H-MoS $_2$ uniform structure, b) 2H cluster FeS $_2$ in 2H MoS $_2$ structure, c) 1H cluster FeS $_2$ in 2H MoS $_2$ structure, d) 1H cluster FeS $_2$ in 1H MoS $_2$ structure. The molybdenum, iron and sulfur atoms are presented in red, blue and green, respectively.

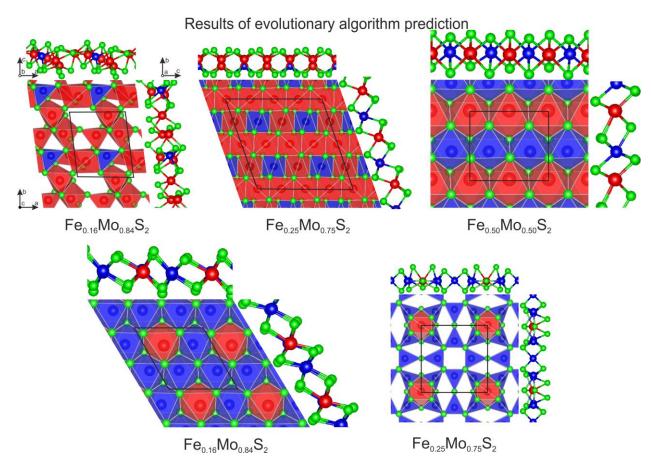


Figure S 2 – The atomic geometries of the most stable $Fe_xMo_{1-x}S_2$ structures, predicted by evolutionary algorithm USPEX. The molybdenum, iron and sulfur atoms are presented in red, blue and green, respectively.