Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting materials

Interfacial Gas Nanobubbles or Oil Nanodroplets?

Xingya Wang,^{a,b} Binyu Zhao,^{*c} Jun Hu,^b Shuo Wang,^b Renzhong Tai,^{a,b} Xingyu Gao^{*a} and Lijuan Zhang^{*a,b}

 ^a Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences, Shanghai 201204, China
^b Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
^c State Key Laboratory of Traction Power, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

*Correspondence to: [byzhao@swjtu.edu.cn], [gaoxingyu@sinap.ac.cn] and [zhanglijuan@sinap.ac.cn]

Figure S1. Volume of PDMS nanodroplets per square micrometer as a function of

PDMS concentration.

The volumes of the PDMS nanodroplets per square micrometer were calculated from AFM images. It was found that higher PDMS-chloroform ratio leads to larger total volume of the PDMS nanodroplets.

Figure S2. Force curves on nanodroplets with lateral size of 230nm obtained by a plasma tip (a) and a non-plasma tip (b).

It is known that the tip after plasma treatment is more hydrophilic than the one without. To further address this question, we measured the force curves on a nanodroplet using a tip after plasma treatment (plasma tip) and one without (non-plasma tip) as shown in the figure S2. It is clear that the magnitude of the "jump-in" and "jump-off" in the force curve using non-plasma tip increased significantly with larger positions for both "jump-in" and "jump-off" as well as a larger distance in-between these two positions. Thus, the

hydrophobicity of the AFM tip mainly affects the magnitude of the attractive force and the adhesion force between the tip and the droplet.