## **Supplementary material**

# Insight into the Mechanism About the Initiation, Growth and Termination of C–C Chain in Syngas Conversion on Co(0001) Surface: A Theoretical Study

Guangxiang Wen,<sup>a</sup> Qiang Wang,<sup>b</sup> Riguang Zhang,<sup>a,\*</sup> Debao Li,<sup>b</sup> Baojun Wang,<sup>a,\*</sup>

<sup>a</sup> Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. China

<sup>b</sup> State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan

030001, Shanxi, PR China

#### Part 1. The Standard Molar Gibbs Free Energy for Gaseous Species and Adsorbed Species

The standard molar Gibbs free energy are calculated according to below Eq. (1):

$$G^{\theta}(T,p) = E_{total} + E_{ZPE} + U^{\theta} - TS^{\theta} + \gamma RT \left[ 1 + \ln\left(p_{CO}/p^{\theta}\right) \right]$$
(1)

For surface reactions, only vibration modes were taken into account. All the vibrational frequencies  $v_i$  (Hz) were calculated based on the statistical mechanics.<sup>1-4</sup>  $E_{ZPE}$  is the zero-point vibration energy, which is calculated by Eq. (2):

$$E_{ZPE} = \sum_{i=1}^{n} \frac{h v_i}{2} \tag{2}$$

Here *h* is Planck's constant and  $v_i$  is the vibrational frequency.

 $U_{\rm vib}^{\Theta}$  is the standard molar vibrational thermal energy, which is calculated by Eq. (3):

$$U^{\theta}_{vib} = R \sum_{i=1}^{\infty} \frac{h v_i / k_B}{e^{h v_i / k_B T} - 1}$$
(3)

<sup>\*</sup> Corresponding author at: No. 79 Yingze West Street, Taiyuan 030024, China. Tel.: +86 351 6018239; Fax: +86 351 6041237 Email address: zhangriguang@tyut.edu.cn (Riguang Zhang); wangbaojun@tyut.edu.cn; quantumtyut@126.com (Baojun Wang)

where  $k_{\rm B}$  is Boltzmann's constant, *R* is the gas constant.

The standard molar vibrational entropy is calculated using the following Eq. (4):

$$S^{\theta}_{vib} = \sum_{i=1}^{n} \left[ -Rln(1 - e^{-hvi/k_{B}T}) + \frac{N_{A}hv_{i}}{e^{hvi/k_{B}T} - 1} \frac{I}{T} \right]$$
(4)

where R is the gas constant.

The relationship between molar enthalpy and the thermal energy is given by Eq. (5):

$$H^{\theta} = U^{\theta} + \gamma RT \tag{5}$$

 $\gamma$  is 0 for surface CO adsorbed species, and 1 for gaseous CO molecule.

In the adsorption/desorption steps, as for the adsorbed species, although the translational and rotational modes are frustrated movements, the translational, rotational contributions are also taken into account for gaseous species. For a gas molecule moving in the three-dimensional (3D) space, the standard molar translational internal energy is given by Eq. (6):

$$U^{\mathbf{0}}_{trans-3D} = \frac{3}{2} \mathrm{RT}$$
(6)

The standard molar translational entropy follows Eq. (7):<sup>3</sup>

$$S^{\mathsf{o}}_{trans-3D} = R \left[ \ln \left( \frac{\left( 2\pi m k_B T \right)^{\frac{3}{2}}}{h^3} \right) + \ln \left( \frac{V}{N_g} \right) + \frac{5}{2} \right]$$
(7)

where *m* is the mass of the molecule and V/Ng is the volume per molecule in the standard state. For a nonlinear molecule, the standard molar rotational internal energy contribution is obtained by Eq. (8):

$$U^{\mathsf{o}}_{rot} = \frac{3}{2}RT\tag{8}$$

The standard molar rotational entropy contribution is obtained by the equation (9):

$$S_{rot}^{o} = R \left[ ln \left( \frac{8\pi^2 \sqrt{8\pi^3 I_x I_y I_z} \left( k_B T \right)^{3/2}}{\sigma h^3} \right) + \frac{3}{2} \right]$$
(9)

where  $I_x$ ,  $I_y$ , and  $I_z$  are the three moments of inertia about the principal axes and  $\sigma$  is the rotational symmetry number.

#### Part 2. H<sub>2</sub> Adsorption and Dissociation, and its Existence Form on Co(0001) Surface

For  $H_2$  adsorption on Co(0001) surface, two adsorption modes have been considered, one is the parallel mode, the other is the vertical mode.

For  $H_2$  adsorption with the parallel mode, it is found that  $H_2$  molecule prefers to adsorb at the top site with two H atoms bonding with one Co atom, the H–Co bond length is 1.62 Å, and the H–H bond is obviously elongated to 0.90 Å compared to 0.75 Å in gas phase, as shown in Figure S1(a), the corresponding adsorption energy is -30.8 kJ·mol<sup>-1</sup>, indicating that the adsorption can contribute to the H–H bond activation of  $H_2$ , which is in favor of  $H_2$  dissociation; meanwhile,  $H_2$  adsorbed initially at the bridge site is also converted into the top site adsorption after geometry optimization. However,  $H_2$  adsorptions with the parallel mode at the fcc and hcp sites are the dissociative adsorption, in which  $H_2$  molecule is dissociated into two H atoms adsorbed on Co(0001) surface.



**Figure S1** The optimized configurations of the single  $H_2$  adsorption with the parallel and vertical modes on Co(0001) surface. Co and H atoms are shown in the purple and white balls, respectively. The unit is in kJ·mol<sup>-1</sup>.

In the case of  $H_2$  adsorption with the vertical mode, the optimized configurations show that  $H_2$  molecules initially adsorbed at the bridge, fcc, hcp and top sites are all far away from the surface, which have the very weak adsorption energies of -1.8, -1.8, -1.7 and -1.9 kJ·mol<sup>-1</sup>, as shown in Figure S1(b), the H–H bond length is hardly changed with respect to that for the free  $H_2$  molecule.

Thus, for  $H_2$  adsorption,  $H_2$  adsorption with the parallel mode at the fcc and hcp sites over Co(0001) surface are dominantly focused on the dissociative adsorption; only the single  $H_2$  adsorption with the parallel mode at the top site is the most stable configuration of molecule adsorption. However, the other adsorption configurations are not favored over Co(0001) surface. For the dissociation of  $H_2$  adsorption with the parallel mode at the top site, this elementary reaction is exothermic 73.2 kJ·mol<sup>-1</sup> with only an activation barrier of 8.0 kJ·mol<sup>-1</sup>, which is rather low compared to its desorption energy (31.0 kJ·mol<sup>-1</sup>), indicating that  $H_2$  dissociation is favorable both kinetically and thermodynamically rather than its desorption.

#### Part 3. Adsorptions of all Possible Species

The adsorption of all possible species involved in syngas conversion over four adsorption sites of Co(0001) have been examined, and the most stable adsorption configurations are displayed in Figure S2 in the main text; the corresponding adsorption free energies at 500 K, as well as the key structural parameters are listed in Table S1.

*C*, *H* and *O* C and O prefer to adsorb at the hcp site, while H prefers to adsorb at the fcc site, which agree with the previous DFT results.<sup>5,6</sup> The adsorption free energies of C, H and O atoms are 657.5, 247.7 and  $570.2 \text{ kJ} \cdot \text{mol}^{-1}$ , respectively.

**CO and OH** CO and OH species prefer to adsorb at the hcp site, where CO adsorbed via C atom with the C–O bond perpendicular to the surface, which agrees with the previous DFT results,<sup>3</sup> the adsorption free energy is  $115.6 \text{ kJ} \cdot \text{mol}^{-1}$ . OH adsorbs via its O atom with its O–H bond

perpendicularly, the adsorption free energy is 299.8 kJ·mol<sup>-1</sup>.

*CH*, *CH*<sub>2</sub> and *CH*<sub>3</sub> CH and CH<sub>2</sub> species prefer to adsorb at the hcp site via C atoms, while  $CH_2$  is asymmetrically adsorbed at the hcp site, which agree with the results obtained by Ge *et al*..<sup>7</sup> CH<sub>3</sub> prefers to adsorb at the fcc site via C atom. The adsorption free energies of CH, CH<sub>2</sub> and CH<sub>3</sub> are 565.9, 336.5 and 143.2 kJ·mol<sup>-1</sup>, respectively.

*CHO*, *CH*<sub>2</sub>*O* and *CH*<sub>3</sub>*O* CHO, CH<sub>2</sub>O and CH<sub>3</sub>O species all prefer to adsorb at the hcp site. CHO binds to the surface with the bridge(O)-bridge(C) configuration, the adsorption free energy is  $171.3 \text{ kJ} \cdot \text{mol}^{-1}$ . CH<sub>2</sub>O prefers to the top(C)-hcp(O) configuration, the adsorption free energy is  $37.3 \text{ kJ} \cdot \text{mol}^{-1}$ . CH<sub>3</sub>O prefers to adsorb through its O atom with the O–C bond perpendicular to the surface, the adsorption free energy is  $230.3 \text{ kJ} \cdot \text{mol}^{-1}$ .

*COH, CHOH and CH<sub>2</sub>OH* COH and CHOH species prefer to adsorb at the hcp site via their C atoms, in which COH adsorbed with the C–O bond perpendicular to the surface, while CHOH adsorbs with the O–H bond pointing toward the surface, which well agrees with the previous studies by Cheng *et al.*,<sup>8</sup> the adsorption free energies of COH and CHOH species are 375.5 and 249.4 kJ·mol<sup>-1</sup>, respectively. CH<sub>2</sub>OH adsorbs at the bridge site via both C and O atoms with an adsorption free energy of 110.9 kJ·mol<sup>-1</sup>, in which the C–O bond is almost parallel to the surface.

 $CH_4$ ,  $CH_3OH$  and  $H_2O$  CH<sub>4</sub>, CH<sub>3</sub>OH and H<sub>2</sub>O species are all weakly bound to Co(0001) surface, the optimized structure of CH<sub>4</sub> is away from the surface with only an adsorption free energy of -1.8 kJ·mol<sup>-1</sup>, which means that CH<sub>4</sub> is far away from the surface. Both CH<sub>3</sub>OH and H<sub>2</sub>O species prefer to adsorb at the top site via the O atom, in which the plane of adsorbed H<sub>2</sub>O is nearly parallel to the surface, the adsorption free energies of CH<sub>3</sub>OH and H<sub>2</sub>O are 4.1 and -1.2 kJ·mol<sup>-1</sup>, respectively.

| Species                               | $G_{\rm ads}({\rm kJ}{\cdot}{\rm mol}^{-1})*$ | Adsorption/configuration | D <sub>Co-X</sub> (Å) | Bonding details |                      |
|---------------------------------------|-----------------------------------------------|--------------------------|-----------------------|-----------------|----------------------|
|                                       |                                               |                          |                       | bond            | length (Å)           |
| С                                     | 657.5(674.6)                                  | hcp: through C           | 1.78                  |                 | _                    |
| Н                                     | 247.7(255.7)                                  | fcc: through H           | 1.74                  | _               | —                    |
| 0                                     | 570.2(581.9)                                  | hcp: through O           | 1.8                   | _               | _                    |
| СО                                    | 115.6(165.5)                                  | hcp: through C           | 1.97                  | C-0             | 1.20                 |
| ОН                                    | 299.8(350.9)                                  | hcp: through O           | 2.00                  | О-Н             | 0.97                 |
| СН                                    | 565.9(615.1)                                  | hcp: through C           | 1.86                  | С-Н             | 1.10                 |
| CH <sub>2</sub>                       | 336.5(394.4)                                  | hcp: through C           | 1.95/1.95/1.97        | С-Н             | 1.10/1.17            |
| CH <sub>3</sub>                       | 143.2(195.8)                                  | fcc: through C           | 2.15/2.15/2.15        | С-Н             | 1.12                 |
| СНО                                   | 171.3(215.4)                                  | hcp: C-bridge, O-bridge  | 1.86/2.07, 2.03/2.11  | С-О/С-Н         | 1.33/1.11            |
| CH <sub>2</sub> O                     | 37.3(79.2)                                    | hcp: C-top, O-hcp        | 1.98, 2.13/2.03/2.04  | С-О/С-Н         | 1.38/1.10            |
| CH <sub>3</sub> O                     | 230.3(264.3)                                  | hcp: through O           | 2.00                  | С-О/С-Н         | 1.44/1.10            |
| СОН                                   | 375.5(415.7)                                  | hcp: through C           | 1.87/1.89/1.90        | С-О/О-Н         | 1.34/0.98            |
| СНОН                                  | 249.4(289.2)                                  | hcp: through C           | 1.97/1.96/1.96        | С-Н/С-О/О-Н     | 1.22/1.38/0.98       |
| CH <sub>2</sub> OH                    | 110.9(147.6)                                  | bridge: C-top, O-top     | 1.99, 2.15            | С-Н/С-О/О-Н     | 1.10/1.47/0.98       |
| CH <sub>4</sub>                       | -1.8(3.4)                                     | away from the surface    | _                     | С-Н             | 1.10                 |
| CH <sub>3</sub> OH                    | 4.1(30.5)                                     | top: through O           | 2.20                  | С-Н/С-О/О-Н     | 1.10/1.45/0.98       |
| H <sub>2</sub> O                      | -1.2(27.7)                                    | top: through O           | 2.23                  | О-Н             | 0.98                 |
| $C_2H_2$                              | 227.7(254.1)                                  | α-C-fcc, β-C-hcp         | 2.03, 2.04            | C-C             | 1.40                 |
| $C_2H_4$                              | 44.9(83.0)                                    | α-C-hcp, β-C-top         | 2.26/2.25/2.10, 2.01  | C-C             | 1.45                 |
| $C_2H_6$                              | 0.6(5.3)                                      | away from the surface    | _                     | C-C             | 1.53                 |
| СНСО                                  | 292.9(334.6)                                  | α-C-fcc, β-C-hcp         | 2.06/2.06             | С-О/С-Н         | 1.10/1.26            |
| CH <sub>2</sub> CO                    | 64.2(99.3)                                    | fcc: α-C-top, β-C-bridge | 1.87/2.00/2.1         | C-O/C-C         | 1.34/1.43            |
| CH <sub>3</sub> CO                    | 166.9(203.9)                                  | hcp: α-C-top, O-bridge   | 1.83/2.09/2.11        | C-0             | 1.31                 |
| СНСНО                                 | 380.3(420.8)                                  | β-C-hcp, O-top           | 2.12/2.07/1.98,1.97   | C-C/C-O         | 1.42/1.29            |
| CH <sub>2</sub> CHO                   | 179.5(205.7)                                  | β-C-top, O-top           | 2.07, 1.92            | C-O/C-C         | 1.32/1.43            |
| CH <sub>3</sub> CHO                   | 14.3(30.9)                                    | top: through O           | 2.09                  | C-O/C-C         | 1.24/1.49            |
| CH <sub>3</sub> CH <sub>2</sub> O     | 182.1(196.1)                                  | top: through O           | 1.81                  | C-O/C-C         | 1.42/1.52            |
| C <sub>2</sub> H <sub>5</sub> OH      | 15.6(32.4)                                    | top: through O           | 2.19                  | C-O/C-C         | 1.46/1.51            |
| CH <sub>2</sub> CH                    | 228.6(276.8)                                  | hcp: α-C-hcp, β-C-top    | 1.93/2.02/2.00, 2.11  | C-C             | 1.42                 |
| CH <sub>3</sub> CH                    | 342.2(353.8)                                  | fcc: through α-C         | 1.96/1.96/2.01        | C-C             | 1.52                 |
| CH <sub>3</sub> CH <sub>2</sub>       | 113.2(154.4)                                  | fcc: through α-C         | 2.14/2.19/2.21        | C-C             | 1.54                 |
| CH <sub>3</sub> CHCH                  | 236.0(279.6)                                  | hcp: α-C-top, β-C-hcp    | 2.04/2.01/2.01        | C-C-C           | 1.42/1.51            |
| CH <sub>3</sub> CHCH <sub>2</sub>     | 39.9(70.9)                                    | hcp: α-C-top, β-C-hcp    | 2.27/2.21/2.10        | C-C-C           | 1.45/1.51            |
| CH₃CHCHO                              | 156.5(191.4)                                  | fcc: O-bridge, C-top     | 2.05/2.05, 2.08       | C-C-C/C-O       | 1.43/1.52, 1.36      |
| CH <sub>3</sub> CH <sub>2</sub> CHO   | -5.4(24.2)                                    | bridge: through O        | 2.13/2.06             | C-C-C/C-O       | 1.48/1.53, 1.26      |
| CH <sub>3</sub> CH <sub>2</sub> CHCHO | 178.9(211.0)                                  | fcc: O-bridge, C-top     | 2.07/2.05, 2.08       | C-C-C-C/C-O     | 1.53/1.52/1.43, 1.36 |
|                                       |                                               |                          |                       |                 |                      |

**Table S1** Adsorption free energies ( $G_{ads}$ ) at 500 K, as well as the corresponding key structural parameters of the stable configurations for the adsorbed species involving in syngas conversion on Co(0001) surface.

\* It is noted that the values in the parentheses is the adsorption free energies at 0 K.

 $C_2H_2$ ,  $C_2H_4$  and  $C_2H_6$   $C_2H_2$  prefers to adsorb on the surface with one C atom placed at the fcc site, while the other C atom placed at the hcp site, the adsorption free energy is 227.7 kJ·mol<sup>-1</sup>.  $C_2H_4$ adsorbs with a hcp(C)-top(C) configuration, the adsorption free energy is 44.9 kJ·mol<sup>-1</sup>. While  $C_2H_6$ is away from the surface with only an adsorption free energy of 0.6 kJ·mol<sup>-1</sup>.

*CHCO*, *CH*<sub>2</sub>*CO* and *CH*<sub>3</sub>*CO* CHCO prefers to adsorb with one C atom at the fcc site while the other C atom at the adjacent hcp site, the adsorption free energy is 292.9 kJ·mol<sup>-1</sup>. CH<sub>2</sub>CO prefers to adsorb at the fcc site with the bridge(C)-top(C) configuration, the adsorption free energy is  $64.2 \text{ kJ} \cdot \text{mol}^{-1}$ . CH<sub>3</sub>CO prefers to adsorb at the bridge(O)-top( $\alpha$ -C) configuration with an adsorption free energy of 166.9 kJ·mol<sup>-1</sup>.

*CHCHO, CH*<sub>2</sub>*CHO and CH*<sub>3</sub>*CHO* CHCHO prefers to the hcp( $\beta$ -C)-top(O) configuration with an adsorption free energy of 380.3 kJ·mol<sup>-1</sup>. CH<sub>2</sub>CHO prefers to the top( $\beta$ -C)-top(O) configuration with an adsorption free energy of 179.5 kJ·mol<sup>-1</sup>. CH<sub>3</sub>CHO adsorbs at the top site via O atom with an adsorption free energy of 24.3 kJ·mol<sup>-1</sup>.

 $CH_3CH_2O$  and  $C_2H_5OH$  CH<sub>3</sub>CH<sub>2</sub>O prefers to the top site via O atom with the adsorption free energy of 182.1 kJ·mol<sup>-1</sup>. C<sub>2</sub>H<sub>5</sub>OH is also adsorbed at the top site via O atom with the adsorption free energy of 15.6 kJ·mol<sup>-1</sup>.

*CH*<sub>2</sub>*CH*, *CH*<sub>3</sub>*CH* and *CH*<sub>3</sub>*CH*<sub>2</sub> CH<sub>2</sub>CH adsorbed via  $\alpha$ -C atom placed at the hcp site while the  $\beta$ -C atom placed at the top site, the adsorption free energy is 228.6 kJ·mol<sup>-1</sup>. CH<sub>3</sub>CH and CH<sub>3</sub>CH<sub>2</sub> prefer to adsorb at the fcc site via the  $\alpha$ -C atom, the adsorption free energies are 342.2 and 113.2 kJ·mol<sup>-1</sup>, respectively.

*CH*<sub>3</sub>*CHCH and CH*<sub>3</sub>*CHCH*<sub>2</sub> Both CH<sub>3</sub>CHCH and CH<sub>3</sub>CHCH<sub>2</sub> prefer to adsorb at the hcp site with the top( $\alpha$ -C)-hcp( $\beta$ -C) configuration, the corresponding adsorption free energies are 236.0 and 39.9 kJ·mol<sup>-1</sup>, respectively.



(31) CH<sub>3</sub>CH<sub>2</sub> (32) CH<sub>3</sub>CHCH (33) CH<sub>3</sub>CHCH<sub>2</sub> (34) CH<sub>3</sub>CHCHO (35) CH<sub>3</sub>CH<sub>2</sub>CHO (36) CH<sub>3</sub>CH<sub>2</sub>CHCHO

**Figure S2** The most stable adsorption configurations of all possible species involved in syngas conversion on Co(0001) surface. The Co, C, H and O atoms are shown in the purple, grey, white and red balls, respectively. The energies are in kJ·mol<sup>-1</sup>.

*CH*<sub>3</sub>*CHCHO and CH*<sub>3</sub>*CH*<sub>2</sub>*CHO* CH<sub>3</sub>CHCHO prefers to adsorb at the fcc site with the bridge(O)-top( $\alpha$ -C and  $\beta$ -C) configuration, the adsorption free energy is 156.5 kJ·mol<sup>-1</sup>. CH<sub>3</sub>CH<sub>2</sub>CHO prefers to adsorb at the bridge site with the C–O bond nearly perpendicular to the surface, the corresponding adsorption free energy is only -5.4 kJ·mol<sup>-1</sup>.

*CH*<sub>3</sub>*CH*<sub>2</sub>*CHCHO* CH<sub>3</sub>CH<sub>2</sub>CHCHO prefers to adsorb at the fcc site with the bridge(O)-top( $\alpha$ -C and  $\beta$ -C) configuration, the adsorption free energy is 178.9 kJ·mol<sup>-1</sup>.

#### Part 4. CH<sub>x</sub>(x=1~3) and CH<sub>3</sub>OH Formation from Syngas

Starting from CO activation, all possible elementary reactions, the corresponding activation (free) energy ( $\Delta G_a$ , kJ·mol<sup>-1</sup>), reaction energies ( $\Delta G$ , kJ·mol<sup>-1</sup>) and the reaction rate constant (k,  $s^{-1}$  or  $L \cdot mol^{-1} \cdot s^{-1}$ ) at 500 K, as well as the only one imaginary frequency of the transition state ( $v_i$ , cm<sup>-1</sup>) involving in syngas conversion on Co(0001) surface have been listed in Table 1 in the main text.

Starting from CHO,  $CH_x(x=1\sim3)$  formations with or without H-assisted have been discussed, respectively. With respect to CHO and CHO+H, the potential energy profiles of  $CH_x(x=1\sim3)$  formation together with the structures of the initial states (ISs), transition states (TSs) and final states (FSs) at the temperature of 500 K are shown in Figures S3~S5, respectively.

## 4.1 CH Formation

As displayed in Figure S3, in R2-1, starting from CHO+H, CHO hydrogenation to CHOH via TS2-1 is endothermic by 29.1 kJ·mol<sup>-1</sup> with an activation free energy of 103.2 kJ·mol<sup>-1</sup>, the rate constant is  $7.00 \times 10^3 L \cdot mol^{-1} \cdot s^{-1}$ .

For CH formation without H-assisted, in R2-2, CHO dissociates into CH+O via TS2-2, this reaction has an activation free energy of 68.9 kJ·mol<sup>-1</sup>, and it is exothermic by 62.9 kJ·mol<sup>-1</sup>. In R2-3, the C–O bond cleavage of CHOH goes through the transition state TS2-3 to produce CH+OH, this reaction is exothermic by 69.0 kJ·mol<sup>-1</sup> with an activation free energy of 78.8 kJ·mol<sup>-1</sup>. These two elementary reactions have the rate constants of  $2.33 \times 10^6$  and  $9.91 \times 10^4$  *s*<sup>-1</sup>, respectively.

For CH formation with H-assisted, in R2-4, the C–O bond scission of CHO with H-assisted leads to CH+OH via TS2-4, this elementary reaction is exothermic by 39.9 kJ·mol<sup>-1</sup> with an activation free energy of 82.8 kJ·mol<sup>-1</sup> and the rate constant of  $2.42 \times 10^4 L \cdot mol^{-1} \cdot s^{-1}$ . In R2-5, starting

from CHOH+H, CHOH dissociation with H-assisted leads to CH+H<sub>2</sub>O via TS2-5; in the final state, CH+H<sub>2</sub>O, CH adsorbs at the hcp site, while H<sub>2</sub>O is far away from the surface with its molecular plane nearly parallel to the surface; this reaction has an activation free energy of 60.3 kJ·mol<sup>-1</sup> with the corresponding rate constant  $5.42 \times 10^6 L \cdot mol^{-1} \cdot s^{-1}$ , and it is exothermic by 19.6 kJ·mol<sup>-1</sup>.



**Figure S3** The potential energy profile of CH formation at 500 K with respect to CHO+H together with the structures of initial states (ISs), transition states (TSs) and final states (FSs); other structures are shown in Figure 2 in the main text. Bond lengths are in Å.

## 4.2 CH<sub>2</sub> Formation

As shown in Figure S4, the formations of CH<sub>2</sub>O and CH<sub>2</sub>OH are firstly investigated. In R3-1,

starting from CHO+H, the co-adsorbed CHO and H species goes through TS3-1 to form CH<sub>2</sub>O, this reaction has an activation free energy of 47.4 kJ·mol<sup>-1</sup>, and it is endothermic by 21.9 kJ·mol<sup>-1</sup>. In R3-2, starting from CH<sub>2</sub>O+H, the adsorbed CH<sub>2</sub>O with H species goes through TS3-2 to form CH<sub>2</sub>OH, this reaction is endothermic by 37.0 kJ·mol<sup>-1</sup> with an activation free energy of 115.7 kJ·mol<sup>-1</sup>. In R3-3, the adsorbed H adatom approaches to CHOH to form CH<sub>2</sub>OH via TS3-3, this reaction has an activation free energy of 66.0 kJ·mol<sup>-1</sup>, and it is endothermic by 29.8 kJ·mol<sup>-1</sup>. The rate constants of above three reactions are  $2.50 \times 10^8$ ,  $4.41 \times 10^1$  and  $4.90 \times 10^6 L·mol^{-1}\cdot s^{-1}$ , respectively.

For CH<sub>2</sub> formation without H-assisted, in R3-4, CH<sub>2</sub>O dissociates into CH<sub>2</sub>+O via TS3-4, this elementary reaction is exothermic by 59.6 kJ·mol<sup>-1</sup>, and it has an activation free energy of 97.2 kJ·mol<sup>-1</sup> with the rate constant of  $3.01 \times 10^3 s^{-1}$ . In R3-5, the direct C–O bond cleavage of CH<sub>2</sub>OH to CH<sub>2</sub>+OH via TS3-5 is exothermic by 79.8 kJ·mol<sup>-1</sup> with an activation free energy of 38.1 kJ·mol<sup>-1</sup>, and the corresponding rate constant is  $1.70 \times 10^9 s^{-1}$ .

For CH<sub>2</sub> formation with H-assisted, in R3-6, the TS obtained for CHO dissociation with Hassisted to CH<sub>2</sub>+O is similar to that of CHO hydrogenation to CH<sub>2</sub>O, suggesting that CHO with Hassisted prefers to be hydrogenated to CH<sub>2</sub>O rather than being dissociated into CH<sub>2</sub>+O. In R3-7, the C–O bond cleavage of CH<sub>2</sub>O with H-assisted produces CH<sub>2</sub>+OH via TS3-7, this reaction is exothermic by 42.8 kJ·mol<sup>-1</sup> with an activation free energy of 63.0 kJ·mol<sup>-1</sup>. In R3-8, the TS obtained for CHOH dissociation with H-assisted to produce CH<sub>2</sub>+OH is similar to that of CHOH hydrogenation to CH<sub>2</sub>OH, indicating that CHOH with H-assisted prefers to be hydrogenated to CH<sub>2</sub>OH rather than being dissociated into CH<sub>2</sub>+OH. In R3-9, CH<sub>2</sub>OH dissociation with H-assisted to CH<sub>2</sub>+H<sub>2</sub>O via TS3-9 has an activation free energy of 26.2 kJ·mol<sup>-1</sup>, and it is exothermic by 52.0 kJ·mol<sup>-1</sup>. The reaction rate constants of R3-7 and R3-9 are  $2.63 \times 10^6$  and  $6.21 \times 10^{10} L·mol<sup>-1</sup>·s<sup>-1</sup>$ , respectively.



**Figure S4** The potential energy profile of  $CH_2$  formation at 500 K with respect to CHO+H together with the structures of ISs, TSs and FSs ; other structures are shown in Figure S2 in the main text. Bond lengths are in Å.

## 4.3 CH<sub>3</sub> Formation

As presented in Figure S5, the formations of CH<sub>3</sub>O and CH<sub>3</sub>OH have three possible reactions (R4-1~R4-3). In R4-1, H adatom approaches to C atom of CH<sub>2</sub>O to produce CH<sub>3</sub>O via TS4-1. In R4-2, CH<sub>3</sub>O hydrogenates to CH<sub>3</sub>OH via TS4-2. In R4-3, CH<sub>2</sub>OH hydrogenates to CH<sub>3</sub>OH via TS4-3.

The activation free energies of these three reactions are 50.0, 137.3 and 78.3 kJ·mol<sup>-1</sup> with the corresponding reaction free energies of -26.7, 48.8 and -14.9 kJ·mol<sup>-1</sup>, respectively; the corresponding reaction rate constants are  $1.81 \times 10^8$ ,  $8.60 \times 10^{-1}$  and  $3.60 \times 10^5 L \cdot mol^{-1} \cdot s^{-1}$ , respectively.



**Figure S5** The potential energy profile of  $CH_3$  formation at 500 Ktogether with the structures of ISs, TSs and FSs with respect to CHO+H; other structures are shown in Figure S2 in the main text. Bond lengths are in Å.

For CH<sub>3</sub> formation without H-assisted, in R4-4 and R4-5, the direct dissociation of CH<sub>3</sub>O and CH<sub>3</sub>OH lead to CH<sub>3</sub> species via TS4-4 and TS4-5, respectively. Both reactions have the activation free energies of 119.7 and 131.1 kJ·mol<sup>-1</sup> with the reaction free energies of -49.7 and -75.1 kJ·mol<sup>-1</sup>, respectively. The rate constants for these two reactions are  $3.92 \times 10^{0}$  and  $4.03 \times 10^{1}$  *s*<sup>-1</sup>, respectively.

For CH<sub>3</sub> formation with H-assisted, in R4-6, the C–O bond scission of CH<sub>2</sub>O with H-assisted produces CH<sub>3</sub>+O via TS4-6, this reaction has an activation free energy of 97.4 kJ·mol<sup>-1</sup> with the reaction free energy of -76.4 kJ·mol<sup>-1</sup>, the corresponding reaction rate constant is  $1.38 \times 10^3 L \cdot mol^{-1} \cdot s^{-1}$ . <sup>1</sup>. In R4-7, the TS obtained for CH<sub>3</sub>O dissociation with H-assisted to produce CH<sub>3</sub>+OH is similar to that of CH<sub>3</sub>O hydrogenation to CH<sub>3</sub>OH, indicating that CH<sub>3</sub>O with H-assisted prefers to be hydrogenated to CH<sub>3</sub>OH rather than being dissociated into CH<sub>3</sub>+OH. In R4-8, the C–O bond cleavage of CH<sub>2</sub>OH with H-assisted goes through TS4-8 to form CH<sub>3</sub>+OH, this reaction is exothermic by 90.0 kJ·mol<sup>-1</sup>, and it has an activation free energy of 32.0 kJ·mol<sup>-1</sup> with the rate constant of  $1.48 \times 10^{10} L \cdot mol^{-1} \cdot s^{-1}$ .

#### 4.4 CH<sub>3</sub>OH Formation

As displayed in Figure S6, with respect to CHO+H, the pathways of CHO+3H $\rightarrow$ CHOH+2H $\rightarrow$ CH<sub>2</sub>OH+H $\rightarrow$ CH<sub>3</sub>OH, CHO+3H $\rightarrow$ CH<sub>2</sub>O+2H $\rightarrow$ CH<sub>2</sub>OH+H $\rightarrow$ CH<sub>3</sub>OH and CHO+3H $\rightarrow$ CH<sub>2</sub>O+2H $\rightarrow$ CH<sub>3</sub>O+H $\rightarrow$ CH<sub>3</sub>OH have the close overall activation free energies of 137.2, 137.6 and 132.5 kJ·mol<sup>-1</sup>, respectively.



Figure S6 The potential energy profile of CH<sub>3</sub>OH formation with respect to CHO+H species at 500 K.

However, the rate constant of the rate-limiting step CHO+H $\rightarrow$ CHOH in the first pathway is  $7.00 \times 10^3 L \cdot mol^{-1} \cdot s^{-1}$ ,  $4.41 \times 10^1 L \cdot mol^{-1} \cdot s^{-1}$  of CH<sub>2</sub>O+H $\rightarrow$ CH<sub>2</sub>OH in the second pathway,  $8.60 \times 10^{-1} L \cdot mol^{-1} \cdot s^{-1}$  of CH<sub>3</sub>O+H $\rightarrow$ CH<sub>3</sub>OH in the third pathway. Therefore, CHO+3H $\rightarrow$ CHOH+2H $\rightarrow$ H<sub>2</sub>OH+H $\rightarrow$ CH<sub>3</sub>OH is the most favorable pathway for CH<sub>3</sub>OH formation.

## Part 5. The Reactions Related to $CH_x(x=2,3)$ Species

The potential energy profile for the dissociation, hydrogenation and coupling of  $CH_x(x=2,3)$ , as well as CO/CHO insertion into  $CH_x(x=2,3)$  is shown in Figures S7 and S8, respectively.

As shown in Figure S7, for CH<sub>2</sub> dissociation into CH and H, this reaction is exothermic by 29.9 kJ·mol<sup>-1</sup> with an activation free energy of 20.8 kJ·mol<sup>-1</sup> and a rate constant of  $2.52 \times 10^{10} \text{ s}^{-1}$ . CH<sub>2</sub> hydrogenation to CH<sub>3</sub> needs an activation free energy of 50.8 kJ·mol<sup>-1</sup> with the rate constant of  $1.15 \times 10^8 L \cdot mol^{-1} \cdot s^{-1}$ , it is exothermic by 7.6 kJ·mol<sup>-1</sup>. For CH<sub>2</sub> coupling, this reaction is exothermic by 39.8 kJ·mol<sup>-1</sup> with an activation free energy of 68.3 kJ·mol<sup>-1</sup> and a rate constant of  $1.71 \times 10^6 L \cdot mol^{-1} \cdot s^{-1}$ . For CO insertion into CH<sub>2</sub>, this reaction is endothermic by 59.0 kJ·mol<sup>-1</sup> with an activation free energy of 87.2 kJ·mol<sup>-1</sup>; while CHO insertion into CH<sub>2</sub> has a relative low activation free energy of 33.3 kJ·mol<sup>-1</sup>, and it is exothermic by 24.6 kJ·mol<sup>-1</sup>, the rate constants for these two insertion reactions are  $2.46 \times 10^4$  and  $6.96 \times 10^9 L \cdot mol^{-1} \cdot s^{-1}$ , respectively. CH<sub>2</sub> coupling with CH has an activation free energy and a reaction free energy of 73.8 and -7.1 kJ·mol<sup>-1</sup>, respectively, and the rate constant is  $3.25 \times 10^5 L \cdot mol^{-1} \cdot s^{-1}$ .

As shown in Figure S8, for CH<sub>3</sub> dissociation into CH<sub>2</sub> and H, this elementary reaction is endothermic by 8.4 kJ·mol<sup>-1</sup> with an activation free energy of 58.4 kJ·mol<sup>-1</sup> and the rate constant of  $1.17 \times 10^7 \ s^{-1}$ . CH<sub>3</sub> hydrogenation to CH<sub>4</sub> has an activation free energy of 98.9 kJ·mol<sup>-1</sup> with the reaction free energy of 2.6 kJ·mol<sup>-1</sup>, it has the rate constant of  $3.99 \times 10^3 \ L \cdot mol^{-1} \cdot s^{-1}$ . For CH<sub>3</sub> coupling, it is exothermic by 23.0 kJ·mol<sup>-1</sup> with a large activation free energy of 150.4 kJ·mol<sup>-1</sup> and the rate constant of  $6.18 \times 10^{-3} L \cdot mol^{-1} \cdot s^{-1}$ . CO insertion into CH<sub>3</sub> is endothermic by 59.0 kJ·mol<sup>-1</sup> with an activation free energy of 141.7 kJ·mol<sup>-1</sup> and a rate constant of  $1.11 \times 10^{-1} L \cdot mol^{-1} \cdot s^{-1}$ . CHO insertion into CH<sub>3</sub> has an activation free energy of 100.5 kJ·mol<sup>-1</sup> with the rate constant of  $1.52 \times 10^{3} L \cdot mol^{-1} \cdot s^{-1}$ , and it is endothermic by 12.4 kJ·mol<sup>-1</sup>.



**Figure S7** The potential energy profile of  $CH_2$  dissociation, hydrogenation, coupling and CHO/CO insertion reactions at 500 K together with the structures of ISs, TSs and FSs; other structures are shown in Figure S2 in the main text. Bond lengths are in Å.



**Figure S8** The potential energy profile of  $CH_3$  dissociation, hydrogenation, coupling and CHO/CO insertion reactions at 500 K together with the structures of ISs, TSs and FSs; other structures are shown in Figure S2 in the main text. Bond lengths are in Å.

## Part 6. The Reactions Related to CHCHO, CH<sub>2</sub>CHO and CH<sub>3</sub>CHO Intermediates

The potential energy profile related to  $CH_xCHO(x=1\sim3)$  intermediates at 500 K together with the structures of ISs, TSs and FSs can be seen in Figure S9.



**Figure S9** The potential energy profile of the reactions related to  $CH_xCHO(x=1\sim3)$  intermediates at 500 K together with the structures of ISs, TSs and FSs involved in C<sub>2</sub> oxygenates formation. Bond lengths are in Å.

Starting from CHCHO intermediate, in R6-1, CHCHO hydrogenation to CH<sub>2</sub>CHO has only an activation free energy of 24.5 kJ·mol<sup>-1</sup>, it is exothermic by 58.7 kJ·mol<sup>-1</sup>. In R6-2, CHCHO hydrogenation to CHCHOH has an activation free energy of 116.9 kJ·mol<sup>-1</sup>, it is endothermic by 27.9 kJ·mol<sup>-1</sup>. However, in R6-3, our results show that CHCH<sub>2</sub>O intermediate cannot stably exists, suggesting that there will be no CHCH<sub>2</sub>O intermediate under the realistic conditions. In R6-4, CHCHO dissociation into CHCH and O needs an activation free energy of 151.0 kJ·mol<sup>-1</sup>, and it is exothermic by 34.9 kJ·mol<sup>-1</sup>. The corresponding reaction rate constants of R6-1, R6-2 and R6-4 are  $7.53 \times 10^{10}$ ,  $2.35 \times 10^{1}$  *L·mol<sup>-1</sup>*·s<sup>-1</sup> and  $1.16 \times 10^{-2}$  s<sup>-1</sup>, respectively. Thus, with CHCHO hydrogenation to CH<sub>2</sub>CHO (R6-1) is the most favorable among all reactions related to CHCHO intermediate.

Starting from CH<sub>2</sub>CHO intermediate, in R6-5, CH<sub>2</sub>CHO hydrogenation to CH<sub>3</sub>CHO has an activation free energy of 57.5 kJ·mol<sup>-1</sup>, it is endothermic by 34.0 kJ·mol<sup>-1</sup>. In R6-6, CH<sub>2</sub>CHO hydrogenation to CH<sub>2</sub>CHOH is endothermic by 44.2 kJ·mol<sup>-1</sup> with an activation free energy of 96.3 kJ·mol<sup>-1</sup>. However, in R6-7, our results show that CH<sub>2</sub>CH<sub>2</sub>O intermediate cannot stably exist under the realistic condition. In R6-8, CH<sub>2</sub>CHO dissociation into CH<sub>2</sub>CH and O needs to overcome an activation free energy of 91.9 kJ·mol<sup>-1</sup>, it is exothermic by 28.3 kJ·mol<sup>-1</sup>. The reaction rate constants of R6-5, R6-6 and R6-8 these three reactions are  $1.41 \times 10^8$ ,  $3.53 \times 10^3 L·mol^{-1}.s^{-1}$  and  $2.35 \times 10^3 s^{-1}$ , respectively. Thus, CH<sub>2</sub>CHO prefers to be hydrogenated to CH<sub>3</sub>CHO among the all mentioned reactions related to CH<sub>2</sub>CHO intermediate.

Starting from CH<sub>3</sub>CHO intermediate, CH<sub>3</sub>CHO hydrogenation to CH<sub>3</sub>CH<sub>2</sub>O in R6-9 is endothermic by 14.9 kJ·mol<sup>-1</sup>, it has an activation free energy of 65.4 kJ·mol<sup>-1</sup> and a reaction rate constant of  $2.40 \times 10^7 L \cdot mol^{-1} \cdot s^{-1}$ . In R6-10, CH<sub>3</sub>CHO hydrogenation to CH<sub>3</sub>CHOH has an activation free energy of 117.4 kJ·mol<sup>-1</sup> with the rate constant of  $6.30 \times 10^0 L \cdot mol^{-1} \cdot s^{-1}$ , and it is endothermic by 37.8 kJ·mol<sup>-1</sup>. However, in R6-11, CH<sub>3</sub>CHO dissociation into CH<sub>3</sub>CH and O only needs an activation free energy of 25.0 kJ·mol<sup>-1</sup>, and possess the largest reaction rate constant of  $3.77 \times 10^{11} s^{-1}$ . Meanwhile, CH<sub>3</sub>CHO dissociation into CH<sub>3</sub>CH is more favorable than its hydrogenation. As a result, among all mentioned reactions related to CH<sub>3</sub>CHO intermediate, CH<sub>3</sub>CH prefers to be formed through the C–O bond cleavage of CH<sub>3</sub>CHO dissociation.

Part 7. The Structures of ISs, TSs and FSs for the Chain Growth Starting from CH<sub>3</sub>CHCHO



**Figure S10** The structures of ISs, TSs and FSs for the chain growth reactions starting from CH<sub>3</sub>CHCHO; other structures are shown in Figure S2 in the main text. Bond lengths are in Å.

#### References

- [1] X. C. Fu, W. X. Shen, T. Y. Yao, Physical Chemistry, Higher Education 4th edn, 1990.
- [2] Y. A. Zhu, D. Chen, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 148, 260–267.
- [3] X. M. Cao, R. Burch, C. Hardacre, P. Hu, Catal. Today, 2011, 165, 71-79.
- [4] X. M. Cao, R. Burch, C. Hardacre, P. Hu, J. Phys. Chem. C, 2011, 115, 19819–19827.
- [5] X. Q. Gong, R. Raval, P. Hu, Surf. Sci., 2004, 562, 247-256.
- [6] L. Joos, I. A. W. Filot, S. Cottenier, E. J. M. Hensen, M. Waroquier, V. V. Speybroeck, R. A. van Santen, J. Phys. Chem. C, 2014, 118, 5317–5327.
- [7] Q. Ge, M. Neurock, H. A. Wright, N. Srinivasan, J. Phys. Chem. B, 2002, 106, 2826–2829.
- [8] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C. Martin Lok, J. Phys. Chem. C, 2008, 112, 9464–9473.