Supplementary Information

Surface functionalized $H_2Ti_3O_7$ nanowires to engineer visible-light photoswitching, electrochemical water splitting, and photocatalysis

Ayan Sarkar,¹ Keshab Karmakar,² Ashutosh K. Singh,³ Kalyan Mandal² and Gobinda Gopal Khan^{4, 1,*}

¹Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, Block-JD2, Sector-III, Salt Lake, Kolkata 700106, India.

² Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.

³ Large Area Device Laboratory, Centre for Nano and Soft Matter Sciences, Jalahalli, Bangalore 560013, India

⁴ Department of Material Science and Engineering, Tripura University, Suryamaninagar, Tripura, 799022, India

* Corresponding author: G. G. Khan, E-mail: gobinda.gk@gmail.com

Figure S1. (a) SAED pattern of HTO NWs, (b) RGB composite of C-HTO NW, obtained from EFTEM.

Figure S2. XPS survey spectra for (a) HTO NWs, (b) C-HTO NWs and (c) N-HTO NWs.

Figure S3. XPS spectrum of C1s of the adventitious carbon, present in HTO.

Figure S4. Schematic diagram depicting the origin of different PL emissions of HTO NWs.¹⁻

Figure S5. Absorption spectra of RhB in presence of (a) HTO, (b) C-HTO and (c) N-HTO NWs during visible light induced photocatalysis.

Relation between reduced mass and wave number

We know,

$$\omega = \sqrt{\frac{k}{\mu}}$$
, $\mu = \frac{m_1 m_2}{m_1 + m_2}$

Where, ω is the angular frequency, k is the spring constant and μ is the reduced mass.

So,
$$\omega \propto \sqrt{\frac{1}{\mu}}$$

Again, wave number $\tilde{v} = \frac{\omega}{2\pi c}$
Therefore, $\tilde{v} \propto \sqrt{\frac{1}{\mu}}$

References:

- 1. Santra, B.; Giri, P. K.; Imakita K.; Fujii, M. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 2013, 5, 5476-5488
- Zhu, T.; Gao, S.-P.; The Stability, Electronic Structure, and Optical Property of TiO₂ Polymorphs. J. Phys. Chem. C 2014, 118, 11385 –11396.
- 3. Zhang, J.; Zhou, P.; Liu, J.; Yu, J.; New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO₂. *Phys. Chem. Chem. Phys.*, **2014**, 16, 20382-20386.
- 4. Wang, Z.; Helmersson, U.; Kall, P.-O.; Optical properties of anatase TiO thin films prepared by aqueous sol-gel process at low temperature. *Thin Solid Films* **2002**, 405, 50–54.
- 5. Bharad, P. A.; Sivaranjani, K.; Gopinath, C. S. A rational approach towards enhancing solar water splitting: a case study of Au–RGO/N-RGO–TiO₂. *Nanoscale* **2015**, *7*, 11206-11215.
- 6. Vasilopoulou, M. The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells. *Nanoscale* **2014**, *6*, 13726-13739.
- 7. Jeon, K-S.; Oh, S-D.; Suh, Y. D.; Yoshikawa, H.; Masuhara, H.; Yoon, M. Blinking photoluminescence properties of single TiO2 nanodiscs: interfacial electron transfer dynamics. *Phys. Chem. Chem. Phys.* **2009**, 11, 534-542.
- Zhang, H.; Zhou, M.; Fu, Q.; Lei, B.; Lin, W.; Guo, H.; Wu, M.; Lei, Y. Observation of defect state in highly ordered titanium dioxide arrays. *Nanotechnology* 2014, 25, 275603.
- 9. Wu, L.; Qiu, Y.; Xi, M.; Li, X.; Cen, C. Fabrication of TiO₂ nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity. *New J. Chem.* **2015**, *39*, 4766-4773.